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Abstract

I construct a measure of cash flow duration at the firm level and
link it to carbon emissions of the same firm. Firms with higher car-
bon emissions generate their cash flows in the near term, reflecting
that long-term cash flows are relatively more exposed to transitional
climate risks. This relationship leads to high correlations of emission
and duration premiums. Until 2008, risk-adjusted returns increase
with emissions and decrease with duration. Thereafter, high emission
and low duration stocks underperform. Return differences are driven
by emissions instead of duration. Overall, these patterns are consis-
tent with a change in investors’ climate concerns after 2008. This
change sheds light on divergent findings in the literature on the effect
of emissions on stock performance and, together with the relationship
between duration and carbon emissions, explains much of the recent
underperformance of value stocks.
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1 Introduction

With increasing awareness of the greenhouse effect, that is the rise in global
temperature from the emission of greenhouse gases (GhG), calls for coor-
dinated actions to mitigate the warming emerge. A major milestone is the
so-called Paris agreement adopted in 2015 by 195 states including all major
economies.1 The agreement is legally binding and involves the reduction of
GhG emissions to net-zero by 2050 to limit global warming to well below
2°Celsius (UNFCCC). Also participants in the financial markets become
increasingly aware of climate risks. Institutional investors form coalitions
to engage with firms and monitor the reduction of emissions2 and financial
regulators consider ”climate-related financial risk disclosure” and an overall
”responsibility to ensure the resiliency of the financial system to climate-
related risks”.3

Potential measures to reduce aggregate emissions to net-zero can involve far-
ranging consequences for a large share of the cross section of firms. Examples
include policies such as mandatory disclosure of and taxes on carbon emis-
sions, technological advancements or regulations, but also reputation risks
as well as changing investor or consumer preferences. Hence, the transition
towards a net-zero emission economy may expose firms’ future cash flows to
risks that are often summarized as transitional climate risks (Giglio2020).

This paper establishes a relationship between transition risks and the time
to maturity of cash flows on the firm level: Today, the emission of carbon
is cheap and subject to only little regulation.4 To match the increasing
marginal cost of carbon reduction5 and to reach the target of a net-zero
emission economy, however, incentives to reduce emissions have to become
stronger over time. A potential tax on emissions is therefore proposed to
increase with time (Nordhaus1993; Marron2014). As a consequence,

1In 2020, the USA withdrew from the agreement and rejoined in 2021. As of January
2022, 194 states and the European Union have signed the agreement representing 97% of
global GhG emissions (WorldResourcesInsitute2022).

2Examples are climateaction100+ or the UN-convened Net-Zero Asset Owner Alliance
with combined $65 and $10 trillion assets under management.

3Quotes by Secretary of the US Treasury Janet L. Yellen at the Institute of Interna-
tional Finance and COP26 in Glasgow, Scotland.

4Firm-level carbon emission disclosure is still voluntary in most countries, including
the US, and the global average price to emit one ton of carbon is $3 and covers about 20%
of global emissions (Black2021).

5Intuitively, avoiding the release of an additional ton of carbon requires extra effort
and, therefore, becomes increasingly costly over time.
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cash flows generated in the more distant future are relatively more exposed
to transition risks than cash flows produced in the near term.

I proxy for transition risk using carbon emission data on the firm level
(hence, I use carbon risk as a synonymous term). I then construct a measure
of cash flow duration for the same firm where the term duration, in analogy
to the fixed-income literature, refers to the value weighted time to maturity
of future equity cash flows.

Using portfolio sorts and regression analysis, I find a negative relationship
between the duration of firms’ cash flows and three measures of carbon
emissions. I consider the total level of carbon emissions (TCE), the intensity
of carbon emissions (ICE) as the total emissions normalized by sales, and
the footprint of carbon emissions (FCE) as the total emissions divided by
firms’ market capitalization. Low duration firms exhibit 14 times more TCE
and FCE and 3 times more ICE than long duration firms. The cash flow
duration of a firm is up to 5 years shorter if it is among the 10% highest
carbon emitters than if it belonged to the 10% of firms emitting the least.

These findings are consistent with the interpretation that firms generate a
larger share of cash flows in the near term if they are more exposed to tran-
sition risks. Conversely, firms that produce a large share of their cash flows
in the distant future, and are therefore more long-term focused, act more
sustainably and emit less carbon. While the relationship between duration
and carbon emissions is significantly negative already at the beginning of
my sample, this effect becomes stronger over time. On the investor level, a
shorter cash flow duration for firms with high carbon emissions implies that
investors already incorporate transitions risks by adjusting the present value
of future cash flows downwards. This horizon effect that becomes stronger
over time is in line with recent findings of Krueger2020 who, in a survey
among institutional investors, find that in particular long-term investors are
increasingly aware of potential climate risks.

So far, the duration literature and the literature on the impact of transitional
climate risk on financial markets have been considered only in separation.
The relationship between cash flow duration and carbon emissions, therefore,
provides a novel channel to connect and extend the literature of two active
and fast growing research areas.

Motivated by this new relation, I sort stocks into quintile portfolios either
based on duration or one of three measures of carbon emissions. First, I find
the term premium (long duration quintile minus short duration quintile) and
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carbon premium (high emission quintile minus low emission quintile) to be
highly correlated. Second, until 2008 average returns, Sharpe ratios, and
CAPM alphas increase with carbon emissions and decrease with years of
cash flow duration. Short duration firms outperform long duration firms
by 0.5% per month while high emission stocks outperform low emission
stocks by 1.1% (TCE) to 1.6% (ICE) per month. This pattern reverses post
2008. Monthly abnormal CAPM returns increase with duration and are
0.7% higher for long duration stocks than for short duration stocks. The
premium on carbon emission is now negative, ranging from -1.0% (TCE)
to -1.2% (ICE). Common equity risk factors cannot explain these patterns.
Over the full sample (2003-2020), the effects are much smaller and mostly
insignificant.

Previous research on duration and the cross section of stock returns find
that short duration firms produce higher average returns, Sharpe ratios,
and CAPM alphas than long duration firms (Dechow2004; Weber2018).
Studies utilizing environmental data to proxy for the effect of climate risks
on stocks returns are inconclusive. Bolton2021 andHsu2021 consider car-
bon emissions and chemical pollution, respectively, and find that investors
demand a premium for the exposure to these risks. Others, however, find an
outperformance of environmentally friendly stocks (In2019; Pastor2021).

This paper provides an explanation for the diverging findings in previous
literature on the effect of corporate emissions on stock returns. Until 2008,
high emission stocks pay a premium, while thereafter, low emission stocks
pay higher returns. The magnitude of abnormal returns is much larger - in
both directions - than in previous studies, suggesting that their results may
be diluted by the respective opposite effect.

The reversal in emission premium is in line with Pastor2020 who show
in an equilibrium model that low emission stocks have lower expected re-
turns. However, they also show that shocks to preferences for clean stocks
and products can lead to temporary higher realized returns of these firms.
Taking advantage of a relatively long sample period, this paper is the first
to document such a change in realized returns post 2008, around the time of
the 15th Climate Change Conference where both the climate change news
index of Engle2020 and Ardia2020 peak. With the outperformance of
green stocks, many studies associate an increase in realized returns for en-
vironmentally friendly firms (In2019; VanderBeck2021; Pastor2021).
However, I find returns of low emission stocks are not different after 2008.
Instead, it is the long-leg, that is the relative underperformance of high
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emission stocks, that drives the change in emission premium.

Several recent studies suggest that duration explains various common eq-
uity risk factors and thereby drives large parts of cross-sectional returns
(Chen2018; Gormsen2021b; Goncalves2021). Given that short dura-
tion firms exhibit high emissions, it could be that changes in the duration
premium lead to the observed patterns on emission-ranked stocks. How-
ever, in a similar argument, Pastor2021 derive a green factor capturing
shocks to investors’ concerns about climate change that explains the large
abnormal returns of green stocks and, with the market factor, parts of the
cross section of returns. To disentangle the duration and emission effects,
I double-sort stocks into portfolios based on duration and one of the car-
bon emission measures. I find that most of the return variation comes from
carbon emissions instead of duration, both before and after 2008.

After controlling for carbon emissions, I find the duration effect to be small
and insignificant. In addition, I construct a measure of unexpected shifts in
investors’ climate concerns similar to that of Ardia2020 and Pastor2021.
I find that shocks to climate concerns not only explain the underperformance
of high emission stocks but also the lower returns of short duration stocks.
Hence, with the higher carbon risk exposure of short duration firms, I pro-
vide an explanation for the (recent) return difference between short and long
duration firms in addition to short-sale constraints (Weber2018), horizon
dependent optimism bias (Cassella2021), risk-pricing (Lazarus2018), and
firms’ capital structure decisions (Belo2015a).

Finally, Pastor2021 argue that their green factor is correlated with the
HML-factor of Fama1993 and as a consequence, investors’ increased envi-
ronmental concerns led to the underperformance of the value factor. The
relationship between climate risk and the timing of cash flows established in
this paper, and the fact that emissions appear to drive the term premium,
support this claim and provide an intuitive argument for the correlation of
the carbon premium and the value factor. I find that both cash flow dura-
tion and carbon emissions help to explain the recent underperformance of
value stocks.

The remainder of this paper is structured as follows. I discuss related lit-
erature immediately below. In Section 2, I introduce data and measures
of carbon emissions and cash flow duration. Section 3 establishes the re-
lationship between cash flow duration and carbon emissions and its time-
variation. Motivated by this relation, Section 4 studies characteristics of
portfolios sorted on duration and emission metrics and dissects their effects.
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Section 5 concludes.

This paper builds on recent literature studying the effect of transitional
climate risks on financial markets. The studies most closely related to mine
also use carbon emission data to proxy for transition risk to explore its
effect on stock returns. In2019 find that in the latter part of their sample
(2010-2015) stocks with low carbon emissions per dollars of revenue pay
abnormal returns of 3% to 5% per year. They do not find a significant
effect in their full sample (2006-2015), however. Bolton2021, on the other
hand, find that investors demand an annual premium of 2% to 4% for stocks
with high levels and growth in carbon emissions. The authors attribute the
premium to institutional investors’ exclusionary screening efforts of certain
industries in order to mitigate transitional climate risks. Considering stocks
ranked on chemical emissions, Hsu2021 find that high emission firms pay
a premium of similar size and relate it to environmental policy uncertainty.
VanderBeck2021 shows that environmental, social, and governance (ESG)
fund flows lead to large demand-induced realized returns that do not imply
high expected returns. Similarly, Pastor2021 empirically show that firms
scoring higher in environmental metrics outperform by more than 5% per
year and relate this to unexpected shocks to environmental concerns.

In a preceding paper, Pastor2020 show in an equilibrium model that low
emission stocks have lower expected returns. Changes in investors’ and
consumers’ preferences for clean stocks and products, however, can lead to
price pressure for these stocks and thus, temporary larger realized returns.
In an alternative model, also Pedersen2021 shows that stocks scoring high
on ESG metrics can lead to high returns depending on investors who only
consider financial metrics.

Further studies explore the reflection of transition risks for other assets such
as equity options (Ilhan2021), and fixed income (Cao2021; Flammer2021;
GreenBonds2018). Engle2020 consider the hedging of climate change
news based on textual analysis. A comprehensive literature summary on the
impact of climate change on financial markets is provided in Giglio2020.

This paper also relates to the literature on cash flow duration of equity.
VanBinsbergen2012 and VanBinsbergen2017 find that claims on ag-
gregate near-term cash flows have higher returns and Sharpe ratios but
lower market betas than the market portfolio. Using firm-level dividend fu-
tures, Gormsen2021a studies the time variation of the equity term struc-
ture and finds that it is downward sloping in normal times but upward
sloping in bad times. Given that firms produce cash flows at different ma-

5



turities, Dechow2004 derive a measure of firm level cash flow duration
on the basis of accounting data and find that on average high duration
firms have lower returns than short duration firms and duration is corre-
lated with the value factor. The authors explain this pattern by relating
duration to the value premium. Lettau2007 offer a theoretical explanation
for their findings. Empirically, Weber2018 finds the duration premium
increases with investor sentiment and is explained by short-sale constraints.
VanBinsbergen2017 provide an overview of newer models reconciling the
empirical patterns on cash flow duration. Finally, Giglio2021 estimate an
affine state space model to price claims on finite-maturity dividends that al-
lows to derive a term structure of equity without the need of traded dividend
strips.

2 Data

I retrieve data from Standard and Poor’s Compustat North America Uni-
verse. I follow standard conventions and exclude financial (6000 <= SIC <
7000) and utility firms (4900 <= SIC < 5000). The book value of equity
(BV) is defined as the total value of common stock, treasury stock, addi-
tional paid-in capital and retained earnings. The market value of equity
is measured as the total number of common shares outstanding multiplied
by the closing price. I use income before extraordinary items as measure
for earnings (E). Sales and sales growth rates in fiscal year t are defined as
the annual net sales in year t and corresponding discrete growth rate across
period t− 1, respectively. All measures are as of the respective firm’s fiscal
year end.

I gather firm-level carbon emission data for years 2002 until 2019 from
Thomson Reuter’s Refinitiv and match it to existing fundamental data on a
firm/year basis. Details on CO2 emission data and the matching procedure
to Compustat fundamentals are provided in Section 2.1.

I exclude observations with missing financial balance sheet or carbon emis-
sion data. In addition, I delete observations with zero sales or non-positive
book values of equity. To reduce the impact of extreme outliers, all variables
are winsorized at the 1% and 99% levels.

Data on stock returns stem from the monthly tape of the Center for Research
on Security Prices (CRSP). I restrict my sample to common stocks trading
on NYSE, Amex, Nasdaq, or ARCA stock exchanges. In addition, I consider
implications of biased CRSP stock returns as a result of a delisting of the
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stock. I account for a potential delisting bias in accordance with findings in
Shumway1997. Therefore, if delisting returns are missing and if a firm is
removed for cause (400 <= DelistCode < 592), I assume a return of -30%
over the month following the delisting of the stock. The market return is
the monthly value weighted return on all NYSE, Amex, Nasdaq, and ARCA
common stocks. The risk free rate is the one-month treasury bill rate. I get
data on equity risk factors including size, value, momentum, profitability,
and investment style from the U.S. Reasearch Returns Data Library on
Kenneth French’s website.

2.1 Carbon emissions

Several major data providers have specialized on gathering non-financial firm
information such as CO2 emission data. Among others, firm-level carbon
emission data of MSCI ESG Research, Trucost or Thomson Reuter’s Refini-
tiv are frequently used in related studies (In2019; Bolton2021; Flammer2021).
I prefer CO2 data from Refinitiv that follow the Greenhouse Gas Proto-
col setting the standards for measuring corporate emissions. Hence, their
database includes reported CO2 emission equivalents by firm and year.6 In
addition, Refinitiv fills data gaps and estimates CO2 emissions if reports are
not available at the firm level. In this case, estimates of CO2 emissions ac-
count for previous reported carbon emissions, firm-level energy consumption
and emission levels of peers.7 Following the Greenhouse Gas Protocol, the
sources of carbon emissions are distinguished in three scopes. My measure of
total carbon emissions includes direct emissions from firm or firm-controlled
resources (Scope 1) and indirect emissions (Scope 2) that stem from con-
sumption of purchased power. As it is difficult to measure, I do not include
other indirect emissions (Scope 3) arising along the value chain such as
emissions from purchased raw materials.

There are concerns about the disagreement between providers on non-financial
firm data, particularly in studies on environmental, social and governance
(ESG) data. Berg2019 find an average correlation between ESG ratings of
only 0.54. However, this seems less of a concern for corporate carbon emis-
sions. Busch2020 study the correlation of reports and estimates of CO2

6Besides carbon dioxide (CO2), this measure includes other climate risk relevant green-
house gases such as methane(CH4) or nitrous oxide(N2O). For details, see the website of
the Greenhouse Gas Protocol: https://ghgprotocol.org.

7Detailed information on estimation procedure can be found here: https:
//www.refinitiv.com/content/dam/marketing/en us/documents/fact-sheets/
esg-carbon-data-estimate-models-fact-sheet.pdf
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emissions among different data providers between 2005 and 2016. Accord-
ing to their findings, the correlation between Refinitiv CO2 data and those
of other providers is on average 0.97 for Scope 1 reports, 0.93 for Scope 2
reports and 0.82 for Scope 1+2 estimates.

I match Refinitiv carbon emission data to Compustat data on CUSIP identi-
fier and fiscal year. For some firms, Refinitiv does not provide CUSIP codes.
In this cases, I use ISINs as primary identifier. If Compustat observations
have the same CUSIP or ISIN codes and a sub-sample of these miss CUSIP
and ISIN identifiers in the Refinitiv universe, I match these observations,
provided they have the same Refinitiv PermID.8

To proxy for firms’ carbon risk, In2019 use the total level of carbon emis-
sions divided by net revenue and Bolton2021 additionally study the level
and change of carbon emissions. Apart from that, the literature provides
little guidance on which metric best measures transition risks. Therefore,
I also rely on carbon emission metrics recommended by the Task Force
on Climate-Related Financial Disclosures (TCFD) established by the G20
countries. Similar to previous literature and in line with the three metrics
proposed by TCFD2017,9 I use the total level of carbon emissions (TCE),
intensity of carbon emissions (ICE), and the footprint of carbon emissions
(FCE) which are defined as:

TCEi,t = Scope1i,t + Scope2i,t (1)

ICEi,t =
Scope1i,t + Scope2i,t

Salesi,t
(2)

FCEi,t =
Scope1i,t + Scope2i,t

Pi,t
(3)

Hence, TCEi,t of firm i in year t is the sum of Scope 1 and Scope2 emission
estimates in tonnes of CO2 equivalents. ICEi,t and FCEi,t are the total
carbon emission normalized by net sales and the market value of the same
firm and year, respectively.

8For 253 firms or 3% of the total number of firms in my sample, I cannot find corre-
sponing Refinitiv identifiers. I remove these firms in my sample.

9These metrics are for voluntary and partially mandatory disclosure for investors in-
cluding banks, asset managers and asset owners in the G20 countries. Thus, investors
may arguably consider these metrics in the selection of their investments.
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2.2 Cash flow duration

With the growth of literature on the term structure of equity, various meth-
ods to empirically disentangle short-term assets from long-term assets have
emerged. One possibility is to study dividend strips of different maturities
on the aggregated market (VanBinsbergen2012) or on individual firms
(Gormsen2021b).

Another option is to directly calculate a measure for the timing of cash flows
similar to the Macaulay duration known from the fixed-income literature.
The Macaulay duration Di,t of firm i in year t is defined as a weighted
average time to reception s of the respective cash flow where the share
of future discounted cash flow to the market price serve as corresponding
weights:

Di,t =

∑T
s=1 s ∗ CFi,t+s/(1 + r)s

Pi,t
(4)

with cash flows CFi,t+s at time t+s, the end-of-year t observed market price
Pi,t and expected return on equity r.

Similar to bonds, the duration for equity can be interpreted as the sensitivity
of future cash flows to changes in their discount rates. However, while the
size and number of cash payments for bonds are typically pre-determined,
stock cash flows are uncertain in size and have potentially infinite matu-
rity. I address these issues in a 3-step procedure similar to Dechow2004;
Weber2018.

First, I split (4) into a finite forecasting period of length T and an infinite
terminal period starting at time T + 1. This partitioning is common in the
corporate finance literature as it allows for a detailed projection of cash flows
up until T while accounting for cash flow maturities of infinite length.

Second, I project firm-level net free cash flow (the difference between cash
flow from operations and cash flow in investing activities) for the finite
forecasting period. Based on clean surplus accounting assumption, i.e. the
book value of equity only increases with earnings and issuance of new shares
and decreases with dividend payments and share buybacks, I can express
CFi,t+s as:
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CFi,t+s = Ei,t+s − (BVi,t+s −BVi,t+s−1)

= BVi,t+s−1(
Ei,t+s

BVi,t+s−1
− BVi,t+s −BVi,t+s−1

BVi,t+s−1
)

= BVi,t+s−1(ROEi,t+s − gi,t+s)

(5)

where Ei,t+s and BVi,t+s−1 denote earnings and lagged realization of book
value of equity, respectively. It follows from (5) that CFi,t+s can be pro-
jected forward by finding predictors for the return on book equity ROE =
Ei,t+s/BVi,t+s−1 and the growth rate of book equity g = ∆BVi,t+s/BVi,t+s−1.
Nissim2001 study the forecasting properties of ROE and g. In line with
their findings, I assume ROE follows a mean-reverting process towards the
average cost of capital.10 Nissim2001 also report that g is better predicted
by past growth in sales than past growth in book values of equity and its
convergence towards the mean is faster than for ROE. As in Dechow2004,
I let g mean revert to the average growth of the economy where the speed of
mean reversion is equal to that of past average sales growth. Hence, I model
ROE and g as an autoregressive process where coefficients are estimated
from a pooled regression of the annual Compustat North America Universe.

Third, I assume the infinite cash flow stream in the terminal period follows
a level perpetuity.11 The implied terminal value of infinite discounted cash
flows is then the difference of the observed stock price Pi,t and the total of
the present value of cash flows derived in the forecast period according to
(5).

∞∑
s=T+1

CFi,t+s

(1 + r)s
= Pi,t −

T∑
s=1

CFi,t+s

(1 + r)s
(6)

Assuming a flat, firm-wide discount rate r allows me to solve for the present
value of perpetual cash flows implicit in the stock price. Weber2018 dis-
cusses the assumptions of a discount rate that is constant across time and
firms. He shows that a firm specific or time-varying discount rate does not

10Also Freeman1982 and Fama2000 find mean reversion of ROE
11The assumption of constant cash-flows throughout the terminal period is not standard

in the equity valuation literature. A constant terminal growth rate, however, would not
change the relative cross-sectional rank of the duration measure as long as T is sufficiently
large to allow for firm and industry specific growth. (See Dechow2004 and Weber2018
for details.)
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affect the cross-sectional ranking of duration. Moreover, his main result
indicate lower returns for high duration stocks. This would increase cross-
sectional differences but again, not change the duration ranking.12

The final market implied measure of cash flow duration is then the sum of
the cash flow duration in the finite forecast period derived according to (4)
and the value-to-price weighted duration of the level perpetuity. With the
value of the perpetuity determined in (6) and recognizing that the duration
of a level annuity starting at the end of T is T + (1 + r)/r, the duration of
cash flows is given by:

Di,t =

∑T
s=1 s ∗ CFi,t+s/(1 + r)s

Pi,t

+

(
T +

1 + r

r

)
Pi,t −

∑T
s=1CFi,t+s/(1 + r)s

Pi,t

(7)

I use a finite forecasting horizon T of 15 years. Coefficients of first-order
autoregressions for ROE and g are 0.41 and 0.24, respectively. I assume
long-run means of the cost of equity and nominal growth rate to be 0.12
and 0.06, respectively. The discount rate r is 0.12. All parameters are
reasonably in line with values in Dechow2004 and Weber2018.13

2.3 Descriptive statistics

My sample of annual fundamental and CO2 emission data starts from Jan-
uary 2002, when Refinitv began to provide carbon emission data for firms in
the S&P500 and Nasdaq 100 indexes, and ends at the end of December in cal-
endar year 2019. Table 1 reports summary statistics for variables that either
are used to construct the measure of cash flow duration or are part of sub-
sequent regressions relating cash flow duration and carbon emissions. Panel
A includes all firm/year observations for which I can calculate a duration
measure. The average duration of cash flows is close to 20 years. Duration
exhibits substantial cross-sectional dispersion as indicated by a standard de-
viation of 5 years. ROE appears to be left-skewed while SalesGrowth is

12In the following chapter, I am relating Duri,t to carbon emissions of the same firm
and year. Pastor2020 shows environmentally friendly firms have lower expected returns.
Hence, if anything, assuming a constant discount rate across firms constitutes an upper
bound for the negative relation between duration and emission.

13Weber2018 studies the sensitivity of cash flows duration to changes in parameter
values.
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skewed to the right.

Panel B includes observations of Panel A for which I find corresponding firm-
identifiers and available carbon emission data in the Refinitiv database. I
end up with about one-third of the initial Compustat firm/year observations.
This sample is at the center of my analysis. It includes on average firms with
larger Size and lower B/M values than the duration-only sample. This is
not surprising, as larger firms are more likely to report carbon emission data.
As in the duration-only sample, ROE is left-skewed in my final sample but
exhibits higher median and average values. The fact that firms who disclose
their carbon emissions are larger in size and more profitable has been noted
earlier (Matsumura2014; Bolton2021). The measure of equity duration,
however, is very similar to that of Panel A, with average and standard
deviation close to 20 and 5 years, respectively. Overall, with the exception
of firm size and ROE, the addition of carbon emission data does not seem
to add substantial selection bias.

TCE appears to be substantially skewed to the right. The average firm in
my sample emits about 3 million tonnes of carbon equivalents while emis-
sions of the median firm is one order of magnitude lower. With an average
standard deviation of 16 million emitted tonnes of CO2, the cross-sectional
heterogeneity is large. Similarly, with an ICE of 900 tonnes of carbon
emissions per dollar of net sales, the average firm exhibits a level of carbon
intensity that is 30-times larger than that of the median firm. To mitigate
the effect of skewness, I log-transform all substantially skewed variables.
These variables include TCE, ICE, Size and, Sales.

Table 6 in the Appendix reports the time variation of the number of ob-
servations and the median values of variables across the sample. As one
may expect, the number of firms disclosing emission data increases with the
awareness of climate related risks. Thus, the number of observations in my
sample quadruples from around 500 to more than 2000 firms per year. Apart
from a slight drop in 2008 and 2009, median cash flow duration appears sta-
ble over time. Annual median TCE, on the other hand, fall substantially.
While the median firm in my sample emits 360 thousand tonnes of CO2 in
2002, the same firm in 2019 emits only 4 thousand tonnes. Median ROE
and Sales values are relatively constant, except the last 4 years where both
decrease. Sales Growth is less stable and even becomes negative in 2008,
potentially due to the financial crisis.

Contemporary cross-correlations of the same variables are reported in Table
7 in the Appendix. Duration decreases with return-on-equity and increases
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Table 1: Summary statistics. This table reports summary statistics (number of
observations, mean, median, and standard deviation) for all the variables used to
construct implied cash flow duration or included in the regressions that relate cash
flow duration to carbon emission. All variables are winsorized at the 1% level.
Panel A includes firm/year observations for which I have data to measure cash flow
duration. Duration is my measure of cash flow duration, log(Size) and log(Sales)
are the natural logarithm of total market capitalization and net sales, respectively.
Both denoted in $million. B/M is the book value of equity divided by the total
market capitalization. ROE is the earnings of the current fiscal year divided by
the lagged book value of equity. Sales growth is the annual growth rate in sales.
Panel B includes all observations of Panel A to which I can match carbon emission
data. TCE denotes the estimated total CO2 emission equivalent in million tonnes
and log(TCE) is its natural logarithm. Similarly, log(ICE) and log(FCE) are the
natural logarithm of the intensity and footprint of carbon emission equivalents as
defined in Equations (2) and (3).

Variables Obs Median Mean SD

Panel A: Duration sample (2002 - 2020)
Duration 59,011 20.31 19.28 5.36
log(Size) 59,011 6.34 6.34 2.20
log(Sales) 59,011 6.11 6.01 2.42
B/M 59,011 0.48 0.66 0.65
ROE 59,011 0.07 -0.01 0.41
Sales Growth 59,011 0.07 0.14 0.49

Panel B: Emission sample (2002 - 2020)
Duration 18,847 20.64 19.68 4.37
TCE (in Mio. t) 18,847 0.15 2.76 16.23
log(TCE) 18,847 11.92 11.89 2.54
log(ICE) 18,847 3.63 3.96 1.60
log(FCE) 18847 3.42 3.51 2.03
log(Size) 18,847 8.40 8.38 1.57
log(Sales) 18,847 8.02 7.93 1.96
B/M 18,847 0.38 0.50 0.47
ROE 18,847 0.12 0.09 0.34
Sales Growth 18,847 0.07 0.12 0.39
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with growth in sales. This is consistent with predictions from Equation
(5) as ROE adds more and Sales Growth less weight on the maturity of
near-term cash flows. With -0.75, duration is also strongly negatively cor-
related with B/M . This supports the frequent interchangeable use of both
terms. However, I will show later that my duration measure contains infor-
mation beyond book-to-market. Overall, the correlations between variables
used to calculate cash flow duration are very similar to those reported in
Dechow2004 and Weber2018. log(TCE) shows a high positive corre-
lation coefficient with both log(Size) and log(Sales). Again, this is not
unexpected since corporate carbon emissions increase with economic activ-
ity (Nordhaus1977). Perhaps less evident is the negative correlation of
Duration with log(TCE), log(ICE) and log(FCE) that I will study in
subsequent section.

3 Linking Duration and Carbon Emissions

In order to reach the target of a net-zero emission economy, policies must be
introduced that encourage the reduction of carbon emissions. One intriguing
tool to efficiently internalize the externalities of climate change is the intro-
duction of a price on carbon emissions. The Nobel laureate Nordhaus1993
is the first to discuss the introduction of carbon tax in a dynamic integrated
climate-economy (DICE) model. He derives an optimal policy that mini-
mizes climate damage and costs of GhG reductions and proposes a steady
increase of the carbon price, in line with most other recommendations on
carbon tax policy (Marron2014). In addition, Marron2014 list three ar-
guments for an increase of the carbon price over time. First, the social cost
of carbon increases with the amount of GhG in the atmosphere. Second, a
credible and transparent path of carbon prices reduces future costs by en-
couraging technological innovation. Lastly, a relative low introductory price
avoids abrupt price shocks and allows for higher political acceptance.

All else equal, an increase in the price on carbon emissions leads to a decline
in future cash flows. This is true, as long as the marginal cost of abating
carbon emissions is increasing. If firms operate in a cost optimum, this is
intuitive, as it requires extra effort to avoid an additional ton of emissions.
Hence, firms future cash flows are affected either from increases in low-
emission investments or larger prices on their remaining emissions. As a
result, firms with high levels of carbon emissions might face a larger decline
in future cash flows than firms with relatively low emissions. Conversely,
given that the emission of a ton of carbon becomes more costly over time,

14



firms that generate a larger share of their cash flows in the distant future
are more exposed to transition risks than firms that produce most of their
cash flows in the near term. Investors aware of these risks may therefore
pay lower prices for affected long-term cash flows leading to a decrease in
duration. Alternatively, firms whose cash flows are generated in the distant
future may be more long-term focused and thereby act more sustainably.

One concern might be that a carbon tax would be simply passed forward
to consumers. Indeed, it is often assumed that, like other taxes, such a
tax on carbon emission would be carried by consumers in the long-run
(Marron2014). However, as long as there is sufficient variation in the
intensity of carbon emissions across sectors, there must be a more price at-
tractive alternative for consumers. Thus, even if firms pass on a potential
carbon tax, product prices of carbon intensive firms become less competitive
and cash flows decrease via the demand channel.14

While a carbon tax is a tangible and widely discussed example of risk to
future cash flows, other transition risks may affect firm cash flows equally
negative. Technological disruptions, tighter environmental regulation, repu-
tation loss or shifts in consumer demand may predominately affect firms that
are perceived as ”climate damaging”. In a survey on climate risk perception
of institutional investors, Krueger2020 find that half of the participants
believe transition risks have already financial implications on their portfolio
firms. They further find that the most frequent use to manage these risks is
to analyze firm-level carbon emissions. Hence, if investors have considered
climate risks already by the time of answering the survey, the perceived im-
plications should be reflected in the stock market. Moreover, if firms’ carbon
emissions proxy for the exposure to transition risk, variation in emissions
may give important insights on how this risk is perceived by market partic-
ipants.

If transition risk is priced, I hypothesize, this should translate into a shorter
duration of cash flows for firms that are more exposed to the same risk.
For this reason, I sort firms into portfolios either sorted on their cash flow
duration or their carbon emission exposure. In particular, each calendar
year t, I rank firms into deciles according to the realization of the sorting
variable in the fiscal year ending in the same year.

14In my sample, the average annual coefficient of variation of the intensity of carbon
emissions ICE for the most granular 4-digit SIC level is 0.96. Thus, on average the
dispersion appears sufficiently large to provide low-emission, price-attractive alternatives
across industries.
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Figure 1: Median total carbon emissions TCE, intensity of carbon emissions
ICE, and carbon emission footprint FCE per median duration of portfolio deciles
ranked on annual cash flow duration. TCE (blue solid line) is plotted against the
left vertical axis while two times ICE and FCE (red dashed and grey dot-dashed
lines) are plotted on the right-hand axis. Portfolios are rebalanced every calendar
year t based on the realization of the sorting variable of the fiscal year ending in
the same year.

In Figure 1, I plot time-series average median carbon emissions on the me-
dian duration of ten portfolios sorted on duration. TCE, ICE, and FCE
decline almost monotonically with cash flow duration. The difference in
emission measures between high and low duration firms is remarkable. The
median firm in the lowest duration decile exhibits a cash flow duration of
13 years and emits 1.3 million tonnes of CO2. Emissions per million dollars
of revenue and market capitalization are about 100 and 180 tonnes, respec-
tively. With a cash flow duration of 24 years, on the other hand, the median
firm in the highest duration portfolio only has 7% of TCE and FCE of the
short duration firm and about one third of its ICE. One interpretation of
this pattern could be that more long-term oriented firms, who generate a
large amount of their cash flows in the more distant future act more environ-
mentally friendly in anticipation of the transition towards a zero-emission
economy.

In Figure 4 in the Appendix, I also plot the time-series average median cash
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flow duration as a function of the ten decile portfolios that are sorted on
TCE, ICE, and FCE. With the exception of the 4th and 7th decile of
the ICE-ranked portfolios, cash flow duration is monotonically decreasing
with all three emission variables. Relative to the median firm in the lowest
TCE-decile, the duration of cash flows reduces by more than 4 years or
18.3% for the median firm in the highest TCE-decile. Similarly, the median
cash flow duration is up to 2 and 5 years years shorter depending on their
rank of ICE and FCE exposure, respectively.

The negative relation of carbon emissions and cash flow duration could be
an artefact that is driven by few industries. Indeed, it appears that high
cash flow duration firms with low carbon emissions often belong to similar
industries. This is analogous to firms with relatively low cash flow duration
and high CO2 emissions. The largest change in value-weighted industry
share in the long duration portfolio compared to that in the short duration
portfolio include firms that operate in the service and retail trade indus-
try. Firms in the transportation and mining industry exhibit most often low
cash flow duration. On the other hand, mining, transportation, and manu-
facturing firms are most frequently included in high TCE, ICE, and FCE
portfolios, while firms in the service and retail trade industry are the most
carbon emission friendly. Relative value weighted industry share differences
of duration and TCE, ICE, and FCE sorted firms can be retrieved from
Figure 5 in the Appendix.

Next, I study the relation between cash flow duration and carbon emissions
more formally. While with ICE and FCE, I implicitly control for potential
sales and size effects, a regression setup allows me to do this explicitly.
Using pooled OLS, I regress my measure of cash flow duration on the level
of carbon emissions and add additional controls:

Durit = λt + αj + β1log(TCE)it + β2Controlsit + ϵit (8)

where λt and αj capture time-fixed and industry-fixed effects for year t and
industry j, respectively. log(TCE)it is the log-transformed level of carbon
emissions of firm i ∈ j and Controlsit is a vector of additional control
variables.

Table 2 reports the regression results. To mitigate the concern of time vari-
ation in variables, mainly prevalent in log(TCE), I include year-fixed effects
in all specifications. I further add industry-fixed effects for specifications
reported in columns (2) and (3)15. In addition to log(Size) and log(Sales),
I also control for B/M in columns (3) and (4). Standard errors are clus-
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tered at the firm and year levels to account for the potential constellation
of firm-level CO2 emissions across firm and time.

Table 2: Cash flow duration and carbon emissions. Linear regression coefficients
of the dependent Duration on log(TCE) and control variables. T-statistics are in
parenthesis. I control for variations in log(Size) and log(Sales), and additionally
B/M in columns (3) and (4). I include year-fixed effects and, in columns (2) and
(3), industry fixed effects. Standard errors are clustered at the firm and year levels.
The sample period is from 2002-2020. Variables are defined in Table 1. Significance
at the 10%, 5% and 1% level are indicated by (*), (**) and (***), respectively.

Duration
Variables (1) (2) (3) (4)

Log(TCE) -0.59*** -0.43*** -0.10*** -0.11**
(-8.93) (-5.92) (-2.79) (-2.51)

Controls:
Log(Size) 1.53*** 1.87*** -0.07 -0.02

(14.61) (17.22) (-1.32) (-0.31)
log(Sales) -1.08*** -1.54*** -0.53*** -0.51***

(-12.02) (-10.71) (-8.16) (-5.07)
B/M -6.86*** -6.69***

(-55.55) (-52.26)

Year F.E. yes yes yes yes
Industry F.E. no yes no yes
No. Obs 18,847 18,847 18,847 18,847
R-squared 0.27 0.40 0.64 0.68
R-Squared (Within) 0.15 0.18 0.54 0.54

The coefficients on log(TCE) are all negative and significant at conventional
significance levels. The coefficient of -0.59 in column (1) indicates that the
average firm has to reduce about 81% of its CO2 emissions to gain an addi-
tional year of cash flow duration. This may sound effortful, however, such
a reduction reduction moves the median firm in the highest emission decile
portfolio only into the second highest decile.16 Controlling for industry-fixed
effects substantially improves the explanatory power of the regression model.
In column (2), the coefficient increases to -0.43 as part of the relation is ab-

15I specify the industry-fixed effect at the most granular 4-digit SIC level. Results of
alternative specifications are similar.

16Relative to neighboring higher emission deciles in the TCE sorted portfolios, the
average carbon emission reduction is 54%.
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sorbed by industry-fixed effects. Overall, log(TCE) coefficients in columns
(1) and (2) indicate an increase in median cash flow duration, from the
highest to the lowest TCE-sorted decile, of 4.6 and 3.3 years, respectively.17

The addition of B/M in columns (3) and (4) shows that my measure of cash
flow duration carries information beyond book-to-market. Both coefficients
are still negative and significant, although much smaller in size. Controlling
for industries has little effect on the relationship between carbon emissions
and cash flow duration. Moreover, the log(Size) effect disappears after the
inclusion of B/M into the regression model.

Figure 2: Point estimate (blue stars) and 95% confidence (shaded area) of the
coefficient of log(TCE) in a 5-year rolling-window regression. Specification as in
column (2) in Table 2.

Since climate risk is a relatively recent phenomenon, I am also interested in
the time-variation of the relationship between cash-flow duration and carbon
emissions. Therefore, I use a 5-year rolling window regression of the same
specification as in column (2) in Table 2. Figure 2 plots point estimates and
95% confidence intervals of the log(TCE) coefficient across time. In line with
investors’ increased awareness of transition risks due to climate change, the

17I calculate the increase in cash flow duration as: log(medianTCEd1/medianTCEd10)∗
β1 where medianTCEd1 is the median of TCE in the first TCE-sorted decile and β1 is
the coefficient on log(TCE).
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duration of cash flows becomes increasingly shorter for the same level of CO2
emissions. In 2007, the coefficient of -0.16 is significantly negative only at
the 5% level, indicating a median increase of only 1.0 year across the range
of TCE-sorted decile portfolio. In contrast, the same coefficient decreased
to -0.54 until the end of fiscal year 2019. The larger negative association
between log(TCE) and duration and greater dispersion of median emissions
between portfolio ranks in 2019, leads to a difference of more than 5.1 years
across TCE-sorted deciles.

4 Duration and Emission Sorted Portfolios

In Section 3, I have shown that a relationship between firm-level cash flow
duration and carbon emissions of the same firm exists. All else equal, the
duration of a firm’s cash flows becomes shorter with higher CO2 levels,
CO2 intensity, and CO2 levels per firm size. So far, return premiums of
both carbon emissions and cash flow duration have only been studied sep-
arately. Using portfolios sorted on cash flow duration, Weber2018 shows
that average returns and CAPM alphas decrease with duration. In2019
finds positive abnormal returns for a portfolio that is long low carbon in-
tensive stocks and short stocks with high CO2 intensity, however, only sig-
nificant for the latter part of their sample. In a similar sample with a 2
years longer period, Bolton2021 find no such effect associated with carbon
intensity. In contrast, their results show a significant return premium for
firms with high levels of CO2 emissions. One major challenge of studies
on firm-level carbon emissions is that these data have been available only
from the early 2000s and thus, the sample size is naturally relatively small.
As data provider typically release emission data on a rolling basis within a
given year, In2019 base their return analysis on emissions reports from the
previous year. Bolton2021, in contrast, use carbon emission data in one
year to explain monthly stock returns over the same year and thereby gain
an additional year of observations. My data allows me to both study returns
based on previous years’ carbon emissions and financial statement reports
to avoid a potential look-ahead bias and analyze a longer time series.

4.1 Return Premiums

At the end of June in each calendar year t, I sort stocks into five quintile
portfolios based on the realization of the sorting variable of the fiscal year
ending in t − 1. This means the sample period of returns reduces to July
2003 until December 2020. Unless otherwise stated, the sorting variables

20



include Dur, TCE, ICE, and FCE. Portfolios are rebalanced annually
and within each portfolio, I weight individual stocks equally.18

For each univariate portfolio sort, I define an HML portfolio that holds a
long position in the highest quintile portfolio and a short position in the
lowest quintile portfolio. Figure 3 plots annual returns of the four HML
portfolios sorted on Dur, TCE, ICE, and FCE across time.

Figure 3: Annual returns in percent of high-minus-low quintile portfolios across
time. At the end of June in each calendar year t, I sort stocks into five quintile
portfolios based on the realization of the sorting variable of the fiscal year ending
in t − 1. Portfolios are univariately sorted either on Dur, TCE, ICE, or FCE.
Returns are equally weighted and include delisting returns. The sample period is
from June 2003 until December 2020.

It appears, there is a large co-variation of all HML portfolios over time.
Since TCE, ICE, and FCE all are designed to proxy for carbon risk, their
high correlation is not surprising. Table 8 in the Appendix reports corre-
lation coefficients of monthly returns between all HML portfolios. Panel A
shows that the correlation of monthly returns among HML carbon emission
portfolios is between 75% and 88% over the full sample. The large negative
correlation between the Dur sorted HML portfolio and carbon risk mim-
icking portfolios is surprising. Even though I have shown that on average

18Results of value-weighted portfolios are similar to those of equally weighted returns.
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high duration firms exhibit low CO2 emissions and vice versa, the effect
on corresponding HML portfolios appears large and relatively stable over
time, in particular from 2008. Over the full sample the correlation coeffi-
cient between Dur and TCE, ICE, FCE monthly HML portfolio returns
is -68%, -62% and -81%, respectively. Panel B and C of Table 8 report
the same coefficients on return correlations for sub sample periods of July
2003 until June 2008 and July 2008 until December 2020. In the early part
of my sample, correlations of duration and emission sorted portfolios are
negative, but substantially smaller in magnitude. However, for the more
recent sub-sample, these time-series are highly negatively correlated. The
larger correlation between duration premium and emission premium over
time seems in line with the increasing negative relationship between cash
flow duration and carbon emissions found earlier and more generally, an
increased awareness of transitions risks among investors.

Figure 3 also helps to shed light on the (partially inconclusive) findings in
previous literature. In line with Weber2018, low duration duration stocks
exhibit higher average returns than high duration stocks up until 2008. Also
until 2008, firms with high CO2 levels, carbon intensity and carbon footprint
paid higher average returns than their low emission counterparts. This is
similar as found in Bolton2021. However, the pattern changes after 2008.
Now firms with low carbon risk pay on average larger returns than firms
that are more exposed to the same risk. This is similar to the green outper-
formance hypothesis of In2019 and Pastor2021. At the same time, the
term premium appears to reverse. Post 2008, average returns appear higher
for long than for short duration stocks. One notable exception is during
early 2016, when the Paris Climate Accords have been signed. At this time,
both low duration and high emission stocks paid larger average returns than
their high duration and low emission counterparts.

Table 3 reports mean returns across quintile and HML portfolios univari-
ately sorted on Dur and the three carbon risk proxies TCE, ICE, FCE.
Panel A includes average returns over the full sample. It seems returns are
increasing with the years of cash flow duration and decreasing with the ex-
posure to carbon risk. However, none of the HML portfolios are significantly
different from zero. This seems to be an artefact of a structural change after
2008. Panel B reports mean returns across quintiles from July 2003 until
June 2008. In the first years of my sample, returns decrease with duration
and increase with all three measures of carbon emissions. Long duration
firms earn with an annual mean return of 11.9% significantly less than short
duration firms (17.8%). At the same time, HML portfolios of TCE, ICE,
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FCE are all positive and significant. With 10.8%, 17.1%, and 16.8%, re-
spectively, the annual return difference between high and low carbon risk
portfolios is large. From 2008, however, this pattern reverses. In Panel
C which includes observations from June 2008 until December 2020, mean
returns monotonically increase with duration while they monotonically de-
crease with exposure to carbon risk. Again, with the exception of FCE,
return differences are significant and substantial in size.

To test whether differences in risk in terms of volatility drive the returns,
I derive Sharpe ratios for each portfolio. Table 9 in the Appendix presents
annualized Sharpe ratios across quintile portfolios sorted on Dur and the
three measures for carbon risk. I use the 1-month treasury bill rate as
proxy for the risk free rate. The resulting picture is very similar to that of
average returns. Panel A suggests that, in the full sample, Sharpe ratios are
increasing with cash flow duration and decreasing with exposure to carbon
emissions. However, the differences across portfolio quintiles are modest and
Sharpe ratios of the HML portfolios are small in magnitude. In contrast,
Panel B shows that before 2008, Sharpe ratios are decreasing with duration
and increasing with emissions, diluting the effect of the full sample. Sharpe
ratios of the HML portfolios are now large. Post 2008, this effect again
reverses as shown in Panel C. The HML portfolios exhibit Sharpe ratios
that are large in magnitude but with opposite signs than before 2008.

Next, I test whether these patterns can be explained by traditional equity
risk factors. Therefore, I regress monthly portfolio level excess returns on
various portfolios mimicking these risk factors:

ri,t − rf,t = αi +
∑
k

βi,kFi,k,tϵit, (9)

where ri,t is the monthly return of portfolio i at time t, rf,t is the monthly
1-month treasury bill rate, αi quantifies the pricing error according to the
asset pricing model, Fi,k,t is the factor-mimicking portfolio and βi,k is the
loading on corresponding risk factor k.

I first consider the Capital Asset Pricing Model (CAPM) (Lintner1965;
Sharpe1964). Table 4 reports estimates of αi for the quintile and HML
portfolios sorted on Dur, TCE, ICE, and FCE. Over the full sample
(Panel A), all portfolios appear correctly priced by the CAPM. Even though
pricing errors increase in duration and decrease with all measures of carbon
emissions, they are small in size and insignificant. However, it seems again
that the results over the full sample are diluted by two opposing effects
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Table 3: Time series average annual return of in quintiles sorted portfolios in per-
cent. In parenthesis, I report t-statistics based on Newey1987 corrected standard
errors. At the end of June in each calendar year t, I sort stocks into five quintile
portfolios based on the realization of the sorting variable of the fiscal year ending in
t− 1. Portfolios are univariately sorted either on Dur, TCE, ICE, or FCE. HML
is the high-minus-low quintile portfolio. Returns are equally weighted and include
delisting returns. Panel A includes the full sample (July 2003 - December 2020),
Panel B includes the early sample (July 2003 - June 2008), and Panel C includes
the late sample (July 2008 - December 2020). Significance at the 10%, 5% and 1%
level are indicated by (*), (**) and (***), respectively.

Low 2 3 4 High HML

Panel A: Jul2003 - Dec2020
Dur 13.16** 13.60** 15.00*** 14.38*** 16.62*** 3.45

(2.12) (2.50) (3.09) (2.95) (3.08) (0.98)
TCE 17.87*** 15.73*** 13.99** 12.84** 12.50** -5.37

(3.31) (3.04) (2.42) (2.46) (2.27) (-1.47)
ICE 16.18*** 14.66*** 13.87*** 14.30*** 13.90* -2.28

(3.27) (2.87) (2.97) (2.67) (1.92) (-0.57)
FCE 15.69*** 14.89*** 13.97*** 13.38** 15.10** -0.59

(3.34) (3.26) (2.88) (2.30) (2.06) (-0.19)

Panel B: Jul2003 - Jun2008
Dur 17.78*** 13.97*** 14.33*** 12.00*** 11.86** -5.92*

(3.28) (2.99) (3.40) (2.65) (2.48) (-1.65)
TCE 10.65* 12.44** 10.89** 14.52*** 21.45*** 10.79**

(1.75) (2.31) (2.42) (3.97) (5.02) (2.50)
ICE 10.17* 9.67* 9.77** 13.09*** 27.25*** 17.08***

(1.91) (1.69) (2.11) (3.48) (5.51) (3.69)
FCE 8.67* 9.51** 11.49** 15.01*** 25.48*** 16.81***

(1.66) (2.03) (2.46) (3.43) (5.09) (4.22)

Panel C: Jul2008 - Dec2020
Dur 9.82 12.30* 14.05** 14.17** 17.38** 7.56*

(1.26) (1.73) (2.21) (2.24) (2.42) (1.74)
TCE 19.60*** 15.80** 14.19* 10.94 7.49 -12.11***

(2.87) (2.42) (1.86) (1.60) (1.05) (-3.13)
ICE 17.42*** 15.58** 14.48** 13.56* 7.16 -10.25**

(2.81) (2.43) (2.44) (1.91) (0.68) (-2.32)
FCE 17.51*** 15.94*** 13.87** 11.49 9.37 -8.14

(2.96) (2.76) (2.23) (1.50) (0.93) (-1.62)
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before and after 2008.19 Panel B reports alphas of the early sample period.
Until June 2008, monthly pricing errors of low duration stocks are large and
significant and decrease with years duration. The HML duration portfolio
exhibits significant abnormal returns of -0.5% per month. Abnormal returns
of the low emission portfolios, on the other hand, are all insignificant, but
increase with the level, intensity, and footprint of carbon emissions. The
high emission portfolios exhibit large and highly significant positive alphas,
leading to sizable emission premiums ranging from 1.1% (TCE) to 1.6%
(ICE) per month. Post 2008, this pattern again reverses. Panel C shows
that CAPM alphas now increase with duration and decrease with ranks of
the carbon emission portfolios. With 0.7%, the monthly pricing error on
the HML duration portfolio is now significantly positive and large. Also
the premium on emission sorted portfolios switched sign and are now all
negative and large in absolute terms, ranging from -1.0% (TCE) to -1.2%
(ICE) per month.

Interestingly, alphas of low emission quintiles are not substantially different
to the alphas observed before 2008. It is the alphas on large emission stocks,
however, that switched sign for all three measures of carbon emissions. Com-
pared to the pre-2008 sample, abnormal returns for high emission stocks have
not only switched signs but decreased by more than 2% per month. Thus,
instead of an out-performance of environmentally friendly stocks along the
line of In2019; Pastor2020; Pastor2021; VanderBeck2021, it is the
relative under-performance of high emissions stocks driving the change in
HML carbon portfolios after 2008. Also for duration sorted portfolios, most
of the change between sub-samples comes from low duration stocks. This
is not very surprising, however, as on average low duration stocks are also
stocks with high carbon emissions.

Next, I explore whether other well-known risk factors can explain the differ-
ences in returns. I consider the Fama1993 3-factor model (FF3), the the
Fama-French 3-factor model augmented with the Carhart1997 momentum
factor (FF4), and the Fama2015 5-factor model (FF5). Tables 10, 11, 12
in the Appendix report monthly FF3, FF4, and FF5 pricing errors, re-
spectively. Again, all tables show results of the full sample (Panel A) and of
the two sub-samples (Panel B and C) where I split the time series at June
2008.

None of the thee factor models can explain the observed return patterns.

19Whether the break-point is December 2007, June 2008, or January 2009 does not
substantially affect the results.
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Table 4: Monthly CAPM pricing errors of in quintiles sorted portfolios in percent.
OLS t-statistics are in parenthesis. At the end of June in each calendar year t, I sort
stocks into five quintile portfolios based on the realization of the sorting variable
of the fiscal year ending in t− 1. Portfolios are univariately sorted either on Dur,
TCE, ICE, or FCE. HML is the high-minus-low quintile portfolio. Returns
are equally weighted and include delisting returns. The market excess returns are
retrieved from Kenneth French’s website. Panel A includes the full sample (July
2003 - December 2020), Panel B includes the early sample (July 2003 - June 2008),
and Panel C includes the late sample (July 2008 - December 2020). Significance at
the 10%, 5% and 1% level are indicated by (*), (**) and (***), respectively.

Low 2 3 4 High HML

Panel A: Jul2003 - Dec2020
Dur -0.25 -0.13 0.06 0.02 0.11 0.36

(-1.14) (-0.88) (0.52) (0.20) (0.68) (1.62)
TCE 0.19 0.08 -0.13 -0.15 -0.19 -0.38

(1.14) (0.59) (-0.89) (-1.10) (-0.94) (-1.59)
ICE 0.13 0.01 -0.01 -0.06 -0.27 -0.41

(1.11) (0.06) (-0.07) (-0.45) (-0.89) (-1.35)
FCE 0.15 0.10 -0.01 -0.20 -0.23 -0.38

(1.02) (1.03) (-0.09) (-1.15) (-0.83) (-1.25)

Panel B: Jul2003 - Jun2008
Dur 0.79*** 0.51*** 0.56*** 0.34** 0.33 -0.45*

(3.63) (2.87) (3.30) (2.10) (1.62) (-1.67)
TCE 0.11 0.33** 0.24 0.64*** 1.22*** 1.11***

(0.40) (2.07) (1.41) (5.59) (3.67) (2.72)
ICE 0.11 0.03 0.16 0.50*** 1.70*** 1.59***

(0.57) (0.17) (1.11) (4.33) (3.61) (3.35)
FCE -0.02 0.11 0.31** 0.64*** 1.50*** 1.52***

(-0.08) (0.98) (2.06) (3.37) (3.75) (3.38)

Panel C: Jul2008 - Dec2020
Dur -0.67** -0.39** -0.15 -0.11 0.02 0.69**

(-2.29) (-2.01) (-1.03) (-0.88) (0.08) (2.39)
TCE 0.22 -0.03 -0.27 -0.47** -0.76*** -0.98***

(1.04) (-0.15) (-1.44) (-2.56) (-3.34) (-3.55)
ICE 0.14 -0.01 -0.07 -0.28 -1.08*** -1.22***

(0.93) (-0.08) (-0.50) (-1.50) (-2.93) (-3.43)
FCE 0.20 0.09 -0.14 -0.53** -0.93*** -1.14***

(1.15) (0.73) (-0.94) (-2.39) (-2.77) (-3.14)
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Over the full sample, abnormal portfolio returns appear largely absent as
most alphas are insignificant. However, when I split the sample, the oppos-
ing effects persist. With the exception of pre-2008 TCE in the FF5-model,
all HML emission portfolios remain significant and switch sign after 2008.
The magnitude of the emission premium is still big, with HML emission
alphas largely above 1% before 2008 and close to -1% after 2008. The dif-
ference between duration sorted portfolios becomes substantially smaller,
as the effect is largely absorbed by the value factor. Only the FF5 HML
duration portfolio remains significant. Nonetheless, low duration stocks still
exhibit significant mispricing across all factor models, with monthly abnor-
mal returns of about 0.6% before and -0.5% after 2008.

Overall, results of the early sample until 2008 are consistent with the study
of Bolton2021 and the hypothesis that abnormal returns for high emission
stocks compensates investors for transitional climate risk. In addition, aver-
age returns, Sharpe ratios and factor alphas decrease with cash flow duration
similiar toVanBinsbergen2012; VanBinsbergen2017; Weber2018. How-
ever, this changes from 2008. Average returns, Sharpe ratios and factor al-
phas decrease with measures of carbon risk and increase with years of cash
flow duration.

4.2 Disentangling Return Premiums

Given that the duration of firm-level cash flows and carbon emissions are
related and the correlation between portfolios sorted on duration and mea-
sures of carbon risk is large, either duration, carbon emissions or a com-
mon factor of both may be driving the returns. Indeed, Goncalves2021;
Gormsen2021b; Chen2018 argue that the duration premium subsumes
major equity risk factors and thereby cash flow duration is a main driver of
cross-sectional returns. In addition, Gormsen2021a studies the time vari-
ation of the equity term structure and finds that it is downward sloping in
good times but upward sloping in bad times. Hence long duration firms may
have outperformed in the aftermath of the financial crisis in 2008 because
their long-term cash flows yielded relatively higher returns. As, on average,
short duration firms exhibit high carbon emissions and vice versa, the change
in duration premium might be an explanation for the underperformance of
high carbon emission stocks after 2008.

An alternative explanation could be that unexpected changes in investors’
preferences for carbon emissions of their stock holdings lead to demand-
induced price pressure on these stocks and subsequent higher realized re-
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turns. In an equilibrium model, Pastor2020 show that green assets have
lower expected returns than their brown counterpart, but unexpected shocks
to investors’ tastes for green stocks can temporarily result in higher realized
returns for these stocks.20

4.2.1 Neutralizing Duration and Emission Effects

Next, I disentangle the duration and carbon emission effects on returns
and test to which extent it is carbon emissions or cash flow duration that
affect the return variation of the univariately sorted portfolios. Therefore, I
double-sort stocks into portfolios based on both Dur and one of the carbon
emission variables TCE, ICE, FCE. This approach allows me to study the
variation effect across one sorting variable while keeping the characteristics
of the second variable constant.

As duration and carbon emission variables are negatively related, I expect
fewer firms in the high (low) emission and high (low) duration portfolios.
To reduce idiosyncratic risk in the double sorted portfolios, I intersect firms
at tertile (instead of quintile) breakpoints and form 3x3 portfolios.21 Thus,
the (1,1) portfolio includes firms of the lowest duration tertile that are also
firms in the lowest tertile of carbon emissions. Likewise, the (1,3) portfo-
lio comprises firm in the lowest duration tertile that are also in the upper
emission tertile.

As with the univariate portfolio sorts, the bivariately sorted portfolios are
rebalanced at the end of June every calender year t based on the realization
of the two sorting variables in the fiscal year that ends in t − 1. HML is
the portfolio that goes long the highest tertile portfolio and short the lowest
tertile portfolio for each sorting variable. As the HML portfolios comprise
the return premiums of one sorting variable while controlling for the other, I
expect the returns of HML duration portfolios to be significant if the return

20In a follow up study, Pastor2021 empirically show that green stocks are outper-
forming brown stocks. They also show that this outperformance disappears when they
control for unanticipated changes in climate related news. In a similar study on ESG
funds, VanderBeck2021 shows that the reallocation of funds from the market portfolio
towards a portfolio capturing ESG preferences can increase the price of ESG stocks by a
factor of 2.5. However, both empirical studies do not capture the change in sign of realized
returns that might be caused by changes in investors’ preferences as their samples start
in late 2012 and 2010, respectively.

21The time-series average number of firms in the (1Dur, 1TCE) and (3Dur, 3TCE) portfo-
lios is 67 and 61, respectively, while the (1Dur, 3TCE) and (3Dur, 1TCE) portfolios include
162 and 170 firms.
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pattern of the univariate portfolio sorts is driven by duration. Similarly,
if emissions are the source of return variation potentially as a result of a
shift in investor preferences, the HML emission portfolio returns may be
significantly different from zero. A third possibility could be that a third
common factor affects both carbon emission and duration portfolios, then
both HML portfolios may exhibit similar patterns.

As there are opposing effects across the full sample that may dilute the
results, I again split the time-series into two subsamples. The first column
in Table 5 shows monthly CAPM alphas of double sorted portfolios from
July 2003 until June 2008 and the second column shows the same for the
period from July 2008 until 2020.22

Even though most emission-neutral duration premiums appear to be nega-
tive during the early sample period, none of the HML duration portfolios
shows significant CAPM alphas. In contrast, HML emission returns are all
positive and highly significant. With one exception, duration-neutral ab-
normal returns increase with emissions across all tertile portfolios and mea-
sures of carbon risk. For ICE and FCE sorted portfolios the differences
in CAPM alphas is above 1% per month, while TCE sorted HML alphas
are substantially smaller. This is interesting, as even before 2008, when car-
bon risks have arguably been less prominent, carbon emissions have been a
greater source of return variation. Thus, the annual duration-neutral emis-
sion premium, that is the average monthly pricing error of the HML emission
portfolios across duration sorts, is 0.71% (TCE), 1.18% (ICE), and 1.21%
(FCE) before 2008. At the same time, the duration effect, calculated as the
mean of average HML duration returns over emission sorts across sorting
variables, is only -0.13%.

Also in the more recent period (see second column in Table 5), the CAPM
alphas on HML duration portfolios are small and largely insignificant. On
the other hand, duration-neutral carbon risk premiums appear to be large
and significantly negative across all HML emission portfolios. On average
and neutral of the duration effect, low emission stocks pay 0.65% (TCE),
0.80% (ICE), and 0.86% (FCE) higher abnormal returns than low emission
stocks after 2008. With 0.32%, the average post-2008 duration effect is much
smaller. Hence, similar to the period before 2008, returns seem to be driven
by carbon emissions rather than duration.

22Over the full sample, untabulated results reveal small and insignificant CAPM alphas
across all portfolios.
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Table 5: Monthly CAPM pricing errors of 3x3 double sorted portfolios in percent.
In parenthesis, I report t-statistics based onNewey1987 corrected standard errors.
At the end of June in each calendar year t, I sort stocks into 3x3 tertile portfolios
based on the realization of the sorting variable of the fiscal year ending in t − 1.
Portfolios are bivariately sorted on both Dur and one of TCE (Panel A), ICE
(Panel B), or FCE (Panel C). HML is the corresponding high-minus-low tertile
portfolio. Returns are equally weighted and include delisting returns. The first
column includes the early sample (July 2003 - June 2008), and the second columns
includes the late sample (July 2008 - December 2020). Significance at the 10%, 5%
and 1% level are indicated by (*), (**) and (***), respectively.

Sample Period: Jul2003 - Jun2008

Dur Low Mid High HML

Panel A: TCE,Dur
TCE
Low 0.75*** 0.26 0.39* -0.36

(3.72) (1.35) (1.82) (-1.38)
Mid 0.58** 0.58*** 0.68*** 0.10

(2.01) (4.70) (4.26) (0.28)
High 1.28*** 1.25*** 1.02*** -0.26

(8.52) (5.79) (3.39) (-1.05)
HML 0.53** 0.99*** 0.64**

(2.47) (4.14) (2.18)

Panel B: ICE,Dur
ICE
Low 0.50** 0.30* 0.09 -0.41

(2.36) (1.95) (0.38) (-1.15)
Mid 0.56*** 0.38** 0.52*** -0.05

(3.25) (2.54) (2.93) (-0.21)
High 1.66*** 1.43*** 1.36*** -0.29

(6.23) (5.91) (4.18) (-0.94)
HML 1.15*** 1.14*** 1.27***

(3.37) (4.49) (3.77)

Panel C: FCE,Dur
FCE
Low 0.34 0.20 0.25 -0.09

(1.63) (1.18) (1.19) (-0.32)
Mid 0.56*** 0.53*** 0.61*** 0.05

(3.12) (3.37) (5.38) (0.23)
High 1.45*** 1.41*** 1.57*** 0.13

(6.32) (5.44) (3.69) (0.33)
HML 1.11*** 1.22*** 1.32***

(4.60) (4.40) (3.42)

Sample Period: Jul2008 - Dec2020

Dur Low Mid High HML

Panel A: TCE,Dur
TCE
Low -0.14 0.25 0.18 0.32

(-0.49) (1.59) (0.73) (1.18)
Mid -0.47 -0.10 -0.03 0.43*

(-1.60) (-0.50) (-0.18) (1.89)
High -0.83*** -0.39** -0.45** 0.38

(-2.93) (-2.21) (-2.10) (1.54)
HML -0.69*** -0.64*** -0.62**

(-2.90) (-4.20) (-2.23)

Panel B: ICE,Dur
ICE
Low -0.10 0.13 0.22 0.32

(-0.43) (0.95) (1.17) (1.24)
Mid -0.23 0.09 0.10 0.33

(-1.13) (0.60) (0.56) (1.60)
High -1.10*** -0.52** -0.53* 0.57**

(-3.04) (-1.98) (-1.79) (2.40)
HML -1.00*** -0.65*** -0.75***

(-3.46) (-3.21) (-3.06)

Panel C: FCE,Dur
FCE
Low -0.14 0.20 0.24 0.39*

(-0.91) (1.50) (1.21) (1.80)
Mid -0.21 -0.01 -0.00 0.20

(-1.01) (-0.05) (-0.03) (1.07)
High -0.88** -0.47* -0.95*** -0.07

(-2.55) (-1.79) (-2.67) (-0.37)
HML -0.74** -0.66*** -1.19***

(-2.46) (-2.90) (-3.39)
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Most of the observed return pattern in the univariate portfolio sorts appear
to be driven by carbon emissions rather than cash flow duration. This is
evidence against previous findings of duration-driven returns and the hy-
pothesis that a flip in the term premium post 2008 is the source of large
returns on low emission stocks. On the other hand, the change in the sign
of the carbon emission premium is in line with the hypothesis of a change
in investors’ preferences for carbon emissions of their stock holdings. After
2008, demand-induced price pressure seems to lead to larger realized returns
of emission friendly stocks. As high emission stocks are on average low du-
ration stocks and vice versa, changes in climate concerns may also affect the
equity term premium.

4.2.2 Climate Concerns as Performance Driver

As Ardia2020 and Pastor2020; Pastor2021 argue, unexpected changes
to investors´ or customers´ climate concerns may push prices of green stocks
upwards relative to brown stocks and thereby lead to temporary higher
realized returns.

Next, I study whether unanticipated shocks to the perception of climate
change drive the high realized returns of low emission and short duration
stocks in the period after 2008. Ardia2020 create an index of media climate
change concerns (MCCC) based on textual analysis of news coverage in ma-
jor US media outlets. A similar index is provided by Engle2020, however,
I prefer the index of Ardia2020 to measure climate change perception as it
is based on 12 media outlets, as opposed to one in Engle2020 and entails
more recent data.

I use the MCCC to construct a measure of shocks to the perception of climate
change risks. In particular, MCCCt in month t denotes the aggregate index
of the updated 2022 version of Ardia2020.23 Similar to Pastor2021, I
assume the presence of climate news to decay slowly over time and model
unexpected climate news ζ as the residual between realized news and a
weighted moving average of past climate shocks:

ζt = MCCCt − (1− λ)

T∑
τ=1

MCCCt−τλ
τ−1 − λTMCCCt−1−T (10)

where λ ∈ (0, 1) captures the persistence of news in investors’ climate risk
perceptions. I use a rolling window of T = 36 months and set λ = 0.95 such

23Data is available at https://sentometrics-research.com/download/mccc/.
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that the most recent year of climate news receives a total weight of 50%.24

To measure the effect of unexpected climate news on stock returns in the
more recent sample period (July 2008 - June 2018), I regress emission and
duration sorted portfolios on my proxy of unanticipated shocks to climate
concerns ζ.25

Table 14 in the Appendix reports the regression results for long-minus-short
duration and the three brown-minus-green portfolios as well as their respec-
tive long-short legs. In accordance with results in Pastor2021, none of the
portfolios loads on contemporaneous climate news shocks. Instead, I also
included climate shocks lagged by one month. With past month’s shocks,
each of the three high emission portfolios as well as the short duration port-
folio exhibit significant negative coefficients. T-statistics of high emission
portfolios range from -1.9 (TCE) to -2.3 (FCE) and are about a factor of
two larger than their low emission counterparts. The same is true for the
short duration portfolio (t-statistics of -2.4) relative to the long duration
portfolio (t-statistics of -1.1). Hence, with the exception of TCE-sorts, the
lagged climate concern shocks load significantly negative on HML emission
portfolios and significantly positive on the HML duration portfolio.

It appears, unexpected shocks to climate concerns, albeit with a one month
lag, explain about 10% of the high emission portfolios’ variance sorted on
ICE or FCE. With 6%, the TCE-sorted portfolio’s R2 is substantially
smaller.26 Hence, unlike in Ardia2020 but similar to Pastor2021, changes
in climate concerns negatively affect stock returns of high emission firms
but do not increase those of low carbon firms. Even more interesting, also
duration sorted portfolios respond to shifts in climate concerns. With 10%,
shocks to climate news explain a substantial part of the short duration
portfolio’s variance.

Next, I construct counterfactual portfolios for which I eliminate the effect
of climate concern shocks. I compute climate-shock neutral returns as the
realized returns of the original portfolios in excess of the product of their
estimated coefficients from Table 14 and their respective time series of re-

24All results are similar for similar values of λ and T which are in turn similar in
Pastor2021 and Ardia2020.

25As I use a 3-year window to estimate ζ and the MMMC index is only available from
2003, I cannot compare results to the earlier sample period.

26With 17% and a similar measure of shocks to climate concerns, Pastor2021 find a
larger portion of a green factor can be explained. However, they use a different sample
period and proxy for greenness. Ardia2020 do not report such a measure.
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gressors derived in Equation (10). This allows me to study how stocks would
have performed in absence of unexpected changes in climate news.

In Table 15 in the Appendix, I report monthly CAPM pricing errors for
counterfactual portfolio returns where climate news shocks are set to zero.
For comparison, I additionally add realized CAPM alphas for the same port-
folios. As the climate news index is only available until June 2018, I also
shorten the time series of realized returns. Therefore, the CAPM alphas of
realized returns differ slightly from returns reported in Table 4, Panel C.

Controlling for changes in climate concerns, the underperformance of high
emission stocks post 2008 vanishes. This is similar to results inPastor2021
and Ardia2020. However, the same is also true for short duration stocks.
The realized CAPM alpha for low duration stocks is significantly negative at
-74bps and increases with duration to -18bps, indistinguishable from zero.
After controlling for climate shocks, the effect on low duration stocks de-
creases by half and all duration portfolios become insignificant. Also for
high emission stocks the magnitude of CAPM alphas shrink approximately
to half.

Curiously, alphas of low emission and high duration stocks increase slightly
when climate concern shocks are set to zero. This comes mechanically from
an insignificant but negative (positive) loading of low emission (long dura-
tion) stocks on the climate news shocks. However, the effect is small, such
that large and significant realized CAPM alphas on both HML emission
and HML duration portfolios become substantially smaller and insignificant
when correcting for changes climate concerns.

Hence, it appears that not only large parts of the higher returns of low
emission stocks, relative to high emission stocks, are driven by unanticipated
shocks to climate concerns. They also explain a substantial amount of the
relative underperformance of short duration firms post 2008.

4.3 Duration and Emissions as Risk Factors

Motivated by the explanatory properties of duration and environmental con-
cerns found in previous literature, I create alternative 2-factor models in the
spirit of Pastor2021. The first factor is the excess return on the market
portfolio and the respective second factor is one of the equally weighted
HML quintile portfolios sorted either on duration or one of the emission
measures TCE, ICE, FCE.
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The market factor augmented with the duration premium cannot explain the
return differences on emission sorted portfolios. Table 16 in the Appendix
reports monthly alphas of the 2-factor model on the univariate portfolio
sorts. While, relative to the CAPM, the magnitude of pricing errors some-
what decreased, all HML duration sorted portfolio returns are still large,
significant and switch sign after 2008.

With the emission sorted factors, in addition to the market factor, however,
most of the return differences become insignificant. Tables 17, 18, and 19 in
the Appendix report alphas corresponding to the factor models that extend
the CAPM with a TCE, ICE, and FCE factor, respectively. The emission
factors appear to explain in particular the more recent returns (Panels C)
well. While before 2008 (Panels B), some of the abnormal returns for high
emission and low duration firms remain, pricing errors are largely absent
after 2008. Among the emission factors, ICE performs best in explaining
the differences in emission and duration sorted portfolio returns.

I am also interested if the 2-factor models can explain known equity risk
factors. Pastor2021 report that the CAPM augmented with their green-
minus-brown factor explains the value (SMB) and momentum (UMD) fac-
tors. Table 20 in the Appendix presents intercepts of the CAPM and 2-
factor models for the portfolios mimicking the size (SMB), value (SMB),
profitability (RMW), investments (CMA), and momentum (UMD) risk fac-
tors. It appears both duration and emission factors can explain the recent
underperformance of the value factor. While the CAPM pricing error is
close to -0.4% over the full sample (Panel A) and -0.6% over the recent sam-
ple period from June 2008 (Panel C), the intercept becomes insignificant
by adding either the HML duration portfolio or one of the HML emission
portfolios as a second factor. In the early subsample (Panel B), the three
emission factors help the explain investment and momentum factors, where
FCE and ICE perform best, respectively. However, this is not true for
the more recent subsample (Panel C). Besides value, Dur does not help to
explain any other risk factor.

5 Conclusion

I construct a measure of cash flow duration at the firm level based on fi-
nancial statement data and market prices. With traded dividend strips,
VanBinsbergen2012; VanBinsbergen2017; Gormsen2021b use a more
clean measure of cash flow duration. My approach, however, allows me to
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study cash flows in a larger cross-section, a longer time-series, and, with
more than 30 years of duration, a larger set of maturities. In addition, I can
link my measure of cash flow duration on the firm level to carbon emission
data of the same firm.

I find that high duration firms emit less CO2. In line with investors’ in-
creased awareness of climate transition risk, this relation becomes stronger
over time and holds for the level, intensity, and footprint of carbon emissions.
As a result, duration and emission premiums exhibit large and negative cor-
relation.

I also find evidence for changes in investors’ taste for carbon emissions in
their stock holdings after 2008. Until 2008, risk-adjusted returns increase
with carbon risk and decrease with cash flow duration. This is consistent
with a positive risk premium on carbon emissions that proxies for transition
risk (Bolton2021) and with high emission firms being located at the short
end of a downward sloping term structure of equity (VanBinsbergen2012;
VanBinsbergen2017; Weber2018). After 2008, this pattern reverses.
High emission and low duration stocks underperform. The negative pre-
mium on carbon emissions is in line with an outperformance of ’green’ stocks
(In2019) and demand driven returns (Pastor2021; VanderBeck2021).

Differences in returns are small and largely insignificant for the full sample,
but high and mostly significant if I split the time-series at the point of per-
ceived change in preference. This structural change might explain and help
to interpret divergent results of previous literature on the carbon premium
of equity. My study is the first to empirically acknowledge and measure this
structural break which further studies may find helpful to consider.

I further explore the nature of the large correlation between the equity term
premium and the carbon risk premium. Rather than duration, I find car-
bon emissions to be the predominant source of return variation. This is
inconsistent with previous literature (Gormsen2021b) and suggests the
change in preference for low carbon stocks may help to explain the recent
underperformance of value firms.
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6 Robustness

- Rank correlations/regressions value weighted returns include utility differ-
ent sic levels include industry fixed effects in ff3 regressions check results for
large sample of duration

With the inclusion of more firms in the sample (likely included firms are
increasingly smaller), the size effect would lead to higher returns over time.
Control for SMB in FF3 regression.

Correlation of full sample 1964-2004 is 99 percent across all 10 portfolios
(with exception of portfolio 1 (98 percent))
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Appendix

Table 6: Summary statistics.This table reports the number of observations and cross-sectional median values of all variables
per year from 2002 until 2019. Variables are defined in Table 1.

Year Obs Duration TCE log(TCE) log(ICE) log(FCE) log(Size) log(Sales) B/M ROE Sales Growth

2002 402 20.41 0.36 12.79 3.98 3.88 8.70 8.55 0.41 0.13 0.05
2003 411 20.89 0.32 12.69 3.79 3.62 8.95 8.68 0.33 0.15 0.11
2004 574 20.91 0.37 12.82 3.95 3.77 8.84 8.51 0.34 0.17 0.13
2005 654 20.97 0.38 12.86 3.92 3.74 9.06 8.63 0.32 0.18 0.10
2006 643 20.87 0.37 12.82 3.75 3.63 9.18 8.74 0.32 0.18 0.12
2007 634 20.75 0.38 12.85 3.75 3.62 9.16 8.77 0.33 0.18 0.10
2008 783 19.00 0.30 12.62 3.80 4.21 8.32 8.54 0.58 0.14 0.08
2009 869 19.88 0.24 12.37 3.83 3.81 8.49 8.26 0.43 0.12 -0.06
2010 907 20.47 0.23 12.36 3.80 3.58 8.70 8.31 0.40 0.15 0.12
2011 909 20.02 0.23 12.33 3.69 3.69 8.56 8.37 0.43 0.15 0.11
2012 908 20.06 0.23 12.33 3.68 3.64 8.72 8.40 0.42 0.14 0.04
2013 914 20.70 0.24 12.37 3.67 3.46 8.95 8.45 0.36 0.14 0.03
2014 913 20.98 0.24 12.40 3.69 3.41 9.03 8.48 0.34 0.13 0.04
2015 1291 20.91 0.14 11.84 3.62 3.37 8.33 8.01 0.35 0.11 0.01
2016 1721 21.03 0.07 11.19 3.51 3.15 7.91 7.51 0.35 0.10 0.03
2017 1988 21.14 0.05 10.82 3.43 2.97 7.75 7.28 0.35 0.10 0.08
2018 2085 20.50 0.04 10.70 3.36 3.05 7.53 7.29 0.42 0.09 0.09
2019 2241 20.84 0.04 10.52 3.26 2.89 7.56 7.15 0.39 0.07 0.04
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Table 7: Summary statistics. Cross-sectional Pearson correlation coefficients between variables. The sample period is from
2002 until 2019. All variables are defined in Table 1

Duration TCE log(TCE) log(ICE) log(FCE) log(Size) log(Sales) B/M ROE Sales Growth

Duration 1.00 -0.26 -0.36 -0.21 -0.45 0.00 -0.30 -0.75 -0.14 0.24
TCE 1.00 0.36 0.27 0.30 0.19 0.25 0.09 0.03 -0.01
log(TCE) 1.00 0.63 0.78 0.60 0.78 0.16 0.31 -0.16
log(ICE) 1.00 0.79 -0.00 0.00 0.23 -0.03 -0.04
log(FCE) 1.00 -0.03 0.37 0.44 0.09 -0.16
log(Size) 1.00 0.78 -0.32 0.39 -0.05
log(Sales) 1.00 0.01 0.43 -0.17
B/M 1.00 -0.17 -0.10
ROE 1.00 -0.10
Sales Growth 1.00
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Figure 4: Time-series average median duration of decile portfolios sorted either on
TCE (blue line), ICE (red dashed line), and FCE (grey dash-dot line). Portfolios
are rebalanced every year t based on the realization of the sorting variable of the
fiscal year ending in the same year.
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(a) (b)

(c) (d)

Figure 5: Value weighted share of industry in the highest quintile minus that in
the lowest quintile Sorting variables are Duration (a), TCE (b), ICE (c), and FCE
(d). Industries are classified at the 1-digit SIC division level.
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Table 8: Pearson correlation coefficients of monthly returns of high-minus-low
(HML) quintile portfolios. At the end of June in each calendar year t, I sort stocks
into five quintile portfolios based on the realization of the sorting variable of the
fiscal year ending in t− 1. Portfolios are univariately sorted either on Dur, TCE,
ICE, or FCE. Returns are equally weighted and include delisting returns. Panel
A includes the full sample (July 2003 - December 2020), Panel B includes the early
sample (July 2003 - June 2008), and Panel C includes the late sample (July 2008 -
December 2020).

DurHML TCEHML ICEHML FCEHML

Panel A: Jul2003 - Dec2020
DurHML 1.00 -0.68 -0.62 -0.81
TCEHML 1.00 0.75 0.81
ICEHML 1.00 0.88
FCEHML 1.00

Panel B: Jul2003 - Jun2008
DurHML 1.00 -0.47 -0.27 -0.54
TCEHML 1.00 0.81 0.90
ICEHML 1.00 0.88
FCEHML 1.00

Panel C: Jul2008 - Dec2020
DurHML 1.00 -0.74 -0.68 -0.86
TCEHML 1.00 0.72 0.78
ICEHML 1.00 0.88
FCEHML 1.00
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Table 9: Annualized Sharpe ratios of in quintiles sorted portfolios. At the end of
June in each calendar year t, I sort stocks into five quintile portfolios based on the
realization of the sorting variable of the fiscal year ending in t − 1. Portfolios are
univariately sorted either on Dur, TCE, ICE, or FCE. HML is the high-minus-
low quintile portfolio. Returns are equally weighted and include delisting returns.
I use the one-month treasury bill rate as measure of the risk free rate. Panel A
includes the full sample (July 2003 - December 2020), Panel B includes the early
sample (July 2003 - June 2008), and Panel C includes the late sample (July 2008 -
December 2020).

Low 2 3 4 High HML

Panel A: Jul2003 - Dec2020
Dur 0.51 0.60 0.73 0.73 0.77 0.31
TCE 0.81 0.75 0.62 0.58 0.53 -0.45
ICE 0.79 0.70 0.68 0.65 0.48 -0.15
FCE 0.78 0.79 0.69 0.56 0.52 -0.04

Panel B: Jul2003 - Jun2008
Dur 1.18 0.93 0.99 0.80 0.73 -0.83
TCE 0.52 0.81 0.71 1.22 1.39 0.94
ICE 0.57 0.50 0.65 1.06 1.49 1.35
FCE 0.43 0.61 0.80 1.09 1.45 1.41

Panel C: Jul2008 - Dec2020
Dur 0.35 0.50 0.64 0.68 0.75 0.61
TCE 0.85 0.70 0.59 0.46 0.30 -1.05
ICE 0.82 0.73 0.67 0.57 0.23 -0.66
TCE/Size 0.84 0.80 0.64 0.45 0.30 -0.49
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Table 10: Monthly Fama1993 3-factor model (FF3) pricing errors in percent.
OLS t-statistics are in parenthesis. At the end of June in each calendar year t, I sort
stocks into five quintile portfolios based on the realization of the sorting variable
of the fiscal year ending in t− 1. Portfolios are univariately sorted either on Dur,
TCE, ICE, or FCE. HML is the high-minus-low quintile portfolio. Returns are
equally weighted and include delisting returns. The market excess returns as well
as size, and value factors are retrieved from Kenneth French´s website. Panel A
includes the full sample (July 2003 - December 2020), Panel B includes the early
sample (July 2003 - June 2008), and Panel C includes the late sample (July 2008
- December 2020). Significance at the 10%, 5% and 1% level are indicated by (*),
(**) and (***), respectively.

Low 2 3 4 High HML

Panel A: Jul2003 - Dec2020
Dur -0.08 -0.03 0.12 0.00 0.01 0.09

(-0.39) (-0.21) (1.22) (0.00) (0.11) (0.51)
TCE 0.12 0.13 -0.06 -0.06 -0.09 -0.21

(0.94) (1.25) (-0.49) (-0.49) (-0.48) (-1.00)
ICE 0.12 0.03 0.03 -0.00 -0.15 -0.27

(1.22) (0.31) (0.30) (-0.01) (-0.51) (-0.92)
FCE 0.04 0.09 0.05 -0.08 -0.06 -0.10

(0.36) (1.09) (0.50) (-0.54) (-0.23) (-0.37)

Panel B: Jul2003 - Jun2008
Dur 0.67*** 0.45*** 0.54*** 0.38** 0.37** -0.30

(3.63) (2.89) (3.34) (2.57) (2.19) (-1.37)
TCE 0.13 0.28** 0.19 0.62*** 1.18*** 1.05**

(0.57) (2.00) (1.31) (5.43) (3.55) (2.58)
ICE 0.08 -0.01 0.15 0.52*** 1.63*** 1.55***

(0.47) (-0.03) (1.06) (4.43) (3.55) (3.21)
FCE 0.03 0.13 0.26* 0.59*** 1.41*** 1.38***

(0.15) (1.10) (1.95) (3.38) (3.66) (3.13)

Panel C: Jul2008 - Dec2020
Dur -0.39 -0.21 -0.04 -0.14 -0.14 0.26

(-1.51) (-1.33) (-0.36) (-1.22) (-0.88) (1.10)
TCE 0.12 0.06 -0.17 -0.32* -0.62*** -0.74***

(0.76) (0.48) (-0.99) (-1.94) (-2.78) (-3.08)
ICE 0.13 0.03 -0.01 -0.18 -0.90** -1.03***

(1.02) (0.32) (-0.05) (-1.05) (-2.50) (-2.89)
FCE 0.05 0.09 -0.04 -0.34* -0.67** -0.72**

(0.34) (0.84) (-0.37) (-1.77) (-2.13) (-2.19)
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Table 11: Monthly pricing errors of the Fama-French 3-factor model augmented
with the Carhart1997 momentum factor (FF4) in percent. OLS t-statistics are
in parenthesis. At the end of June in each calendar year t, I sort stocks into five
quintile portfolios based on the realization of the sorting variable of the fiscal year
ending in t − 1. Portfolios are univariately sorted either on Dur, TCE, ICE, or
FCE. HML is the high-minus-low quintile portfolio. Returns are equally weighted
and include delisting returns. The market excess returns as well as size, value,
and momentum factors are retrieved from Kenneth French´s website. Panel A
includes the full sample (July 2003 - December 2020), Panel B includes the early
sample (July 2003 - June 2008), and Panel C includes the late sample (July 2008
- December 2020). Significance at the 10%, 5% and 1% level are indicated by (*),
(**) and (***), respectively.

Low 2 3 4 High HML

Panel A: Jul2003 - Dec2020
Dur -0.02 0.01 0.14 0.02 0.04 0.07

(-0.13) (0.11) (1.60) (0.23) (0.37) (0.39)
TCE 0.14 0.16* -0.02 -0.02 -0.07 -0.21

(1.11) (1.84) (-0.17) (-0.17) (-0.36) (-0.97)
ICE 0.15 0.05 0.06 0.05 -0.11 -0.26

(1.57) (0.60) (0.73) (0.41) (-0.38) (-0.87)
FCE 0.06 0.11 0.08 -0.03 -0.01 -0.07

(0.57) (1.42) (0.96) (-0.24) (-0.06) (-0.28)

Panel B: Jul2003 - Jun2008
Dur 0.58*** 0.46*** 0.51*** 0.33** 0.31* -0.26

(3.06) (2.79) (2.99) (2.18) (1.79) (-1.15)
TCE 0.08 0.39*** 0.22 0.59*** 0.91*** 0.83*

(0.33) (2.86) (1.48) (4.90) (2.79) (2.00)
ICE 0.15 0.02 0.25* 0.53*** 1.21*** 1.06**

(0.82) (0.11) (1.81) (4.35) (2.75) (2.34)
FCE 0.02 0.13 0.36*** 0.60*** 1.08*** 1.06**

(0.10) (1.06) (2.73) (3.30) (2.89) (2.42)

Panel C: Jul2008 - Dec2020
Dur -0.45* -0.25* -0.07 -0.16 -0.17 0.28

(-1.95) (-1.87) (-0.68) (-1.57) (-1.19) (1.24)
TCE 0.10 0.04 -0.20 -0.36*** -0.66*** -0.76***

(0.67) (0.31) (-1.49) (-2.75) (-3.20) (-3.20)
ICE 0.10 0.01 -0.03 -0.22 -0.96*** -1.06***

(0.93) (0.15) (-0.29) (-1.61) (-2.87) (-3.08)
FCE 0.03 0.07 -0.07 -0.38** -0.73** -0.75**

(0.22) (0.74) (-0.69) (-2.43) (-2.59) (-2.41)
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Table 12: Monthly Fama2015 5-factor model (FF5) pricing errors in percent.
OLS t-statistics are in parenthesis. At the end of June in each calendar year t, I sort
stocks into five quintile portfolios based on the realization of the sorting variable
of the fiscal year ending in t− 1. Portfolios are univariately sorted either on Dur,
TCE, ICE, or FCE. HML is the high-minus-low quintile portfolio. Returns
are equally weighted and include delisting returns. The market excess returns as
well as size, value, investment, and profitability factors are retrieved from Kenneth
French´s website. Panel A includes the full sample (July 2003 - December 2020),
Panel B includes the early sample (July 2003 - June 2008), and Panel C includes
the late sample (July 2008 - December 2020). Significance at the 10%, 5% and 1%
level are indicated by (*), (**) and (***), respectively.

Low 2 3 4 High HML

Panel A: Jul2003 - Dec2020
Dur -0.19 -0.11 0.07 0.02 0.08 0.27

(-0.95) (-0.90) (0.70) (0.22) (0.70) (1.61)
TCE 0.24* 0.11 -0.12 -0.15 -0.21 -0.44**

(1.90) (1.08) (-0.95) (-1.15) (-1.08) (-2.18)
ICE 0.15 0.07 -0.01 -0.05 -0.29 -0.44

(1.49) (0.71) (-0.10) (-0.35) (-0.97) (-1.48)
FCE 0.19* 0.08 0.01 -0.20 -0.20 -0.38

(1.83) (0.92) (0.08) (-1.32) (-0.77) (-1.47)

Panel B: Jul2003 - Jun2008
Dur 0.59*** 0.37** 0.41** 0.47*** 0.45** -0.14

(3.01) (2.23) (2.44) (3.09) (2.50) (-0.62)
TCE 0.39* 0.30** 0.16 0.56*** 0.88*** 0.49

(1.77) (2.08) (1.02) (4.59) (2.77) (1.38)
ICE 0.16 0.14 0.24* 0.53*** 1.21*** 1.04**

(0.87) (0.84) (1.67) (4.17) (2.75) (2.32)
FCE 0.30 0.13 0.31** 0.48** 1.07*** 0.77**

(1.64) (1.06) (2.30) (2.62) (2.90) (2.05)

Panel C: Jul2008 - Dec2020
Dur -0.50* -0.29* -0.07 -0.11 -0.04 0.46**

(-1.90) (-1.82) (-0.57) (-0.95) (-0.29) (2.08)
TCE 0.22 0.06 -0.19 -0.38** -0.71*** -0.92***

(1.40) (0.46) (-1.16) (-2.31) (-3.13) (-3.98)
ICE 0.16 0.06 -0.04 -0.20 -1.00*** -1.16***

(1.32) (0.56) (-0.33) (-1.16) (-2.72) (-3.24)
FCE 0.19 0.09 -0.08 -0.42** -0.78** -0.97***

(1.56) (0.82) (-0.64) (-2.20) (-2.47) (-3.10)
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Table 13: Time series average annual return of 3x3 double sorted portfolios in
percent. In parenthesis, I report t-statistics based on Newey1987 corrected stan-
dard errors. At the end of June in each calendar year t, I sort stocks into 3x3 tertile
portfolios based on the realization of the sorting variable of the fiscal year ending
in t − 1. Portfolios are bivariately sorted on both Dur and one of TCE (Panel
A), ICE (Panel B), or FCE (Panel C). HML is the corresponding high-minus-low
tertile portfolio. Returns are equally weighted and include delisting returns. The
first column includes the early sample (July 2003 - June 2008), and the second
columns includes the late sample (July 2008 - December 2020). Significance at the
10%, 5% and 1% level are indicated by (*), (**) and (***), respectively.

Sample Period: Jul2003 - Jun2008

Dur Low Mid High HML

Panel A: TCE,Dur
TCE
Low 15.56** 9.44 10.45** -5.11

(2.31) (1.64) (1.97) (-1.48)
Mid 12.95** 11.91*** 12.13*** -0.82

(2.12) (2.71) (3.17) (-0.00)
High 19.83*** 18.38*** 15.91*** -3.92

(4.48) (5.13) (3.65) (-1.15)
HML 4.27 8.94** 5.46

(1.31) (2.29) (1.31)

Panel B: ICE,Dur
ICE
Low 11.99** 9.76* 7.42 -4.57

(1.97) (1.74) (1.38) (-0.96)
Mid 12.43** 9.57** 10.75** -1.68

(2.29) (2.20) (2.36) (-0.47)
High 24.53*** 20.76*** 19.85*** -4.68

(4.85) (5.33) (4.33) (-1.15)
HML 12.54*** 11.00*** 12.42**

(3.40) (3.02) (2.54)

Panel C: FCE,Dur
FCE
Low 9.79* 8.60 8.46* -1.33

(1.88) (1.59) (1.75) (-0.35)
Mid 11.96** 11.09** 11.62*** -0.34

(2.22) (2.52) (2.77) (-0.04)
High 22.47*** 20.75*** 22.83*** 0.36

(4.22) (4.94) (4.42) (0.24)
HML 12.68*** 12.15*** 14.36***

(4.48) (3.37) (3.28)

Sample Period: Jul2008 - Dec2020

Dur Low Mid High HML

Panel A: TCE,Dur
TCE
Low 15.91** 17.76*** 18.21*** 2.30

(1.96) (2.96) (2.70) (0.78)
Mid 13.06 14.78** 15.30** 2.24

(1.53) (2.17) (2.19) (0.36)
High 6.21 10.51 10.90 4.69

(0.91) (1.63) (1.41) (1.24)
HML -9.70*** -7.25*** -7.31**

(-2.81) (-3.69) (-2.21)

Panel B: ICE,Dur
ICE
Low 14.36** 15.85*** 18.00*** 3.63

(2.21) (2.73) (2.73) (0.93)
Mid 13.28* 15.68*** 16.65*** 3.37

(1.90) (2.59) (2.66) (1.03)
High 6.17 11.06 11.37 5.20

(0.64) (1.39) (1.35) (1.42)
HML -8.19** -4.80* -6.63**

(-2.10) (-1.80) (-2.38)

Panel C: FCE,Dur
FCE
Low 11.85** 16.27*** 17.88*** 6.03**

(2.26) (2.85) (2.90) (2.07)
Mid 12.29** 14.50** 15.97** 3.68

(2.02) (2.42) (2.29) (1.07)
High 9.30 12.04 8.34 -0.97

(0.94) (1.53) (0.80) (-0.84)
HML -2.54 -4.22 -9.55**

(-0.66) (-1.30) (-2.16)
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Table 14: Regression coefficients of duration and emission sorted portfolios on
contemporaneous and lagged climate concern measures ζ. In parenthesis, I report
t-statistics based on Newey1987 corrected standard errors. ζ is measured as in
Equation (10). At the end of June in each calendar year t, I sort stocks into
five quintile portfolios based on the realization of the sorting variable of the fiscal
year ending in t − 1. High and Low are the respective 5th and 1st quintiles, and
HML their difference. Portfolios are sorted either on Dur, TCE, ICE, or FCE as
reported in Panels A, B, C, and D, respectively. Returns are equally weighted and
include delisting returns. The sample period is from July 2008 until June 2018.
Significance at the 10%, 5% and 1% level are indicated by (*), (**) and (***),
respectively.

Panel A: Duration

Dur Low High HML

ζt -0.00 -0.01 -0.00
(-0.18) (-0.30) (-0.13)

ζt−1 -0.06** -0.02 0.04**
(-2.37) (-1.11) (2.06)

R2(%) 10.0 2.6 9.7

Panel B: CO2 Totals

TCE Low High HML

ζt -0.00 -0.00 -0.00
(-0.04) (-0.25) (-0.32)

ζt−1 -0.02 -0.04* -0.02
(-1.14) (-1.90) (-1.59)

R2(%) 1.9 6.1 4.5

Panel C: CO2 Intensity

ICE Low High HML

ζt -0.00 -0.01 -0.00
(-0.30) (-0.40) (-0.29)

ζt−1 -0.02 -0.07** -0.04*
(-1.23) (-2.15) (-1.84)

R2(%) 2.8 9.3 8.6

Panel D:CO2 Footprint

FCE Low High HML

ζt -0.00 -0.00 -0.00
(-0.06) (-0.21) (-0.22)

ζt−1 -0.02 -0.07** -0.05**
(-0.83) (-2.30) (-2.36)

R2(%) 1.2 10.2 12.8
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Table 15: Monthly CAPM pricing errors of realized and for climate shocks cor-
rected quintile portfolios. In parenthesis, I report t-statistics based on Newey1987
corrected standard errors. At the end of June in each calendar year t, I sort stocks
into five quintile portfolios based on the realization of the sorting variable of the
fiscal year ending in t− 1. Portfolios are univariately sorted either on Dur, TCE,
ICE, or FCE and reported in Panels A, B, C, and D, respectively. HML is the
high-minus-low quintile portfolio. Returns are equally weighted and include delist-
ing returns. The market excess returns are retrieved from Kenneth French’s website.
The sample period is from July 2008 until June 2018. Significance at the 10%, 5%
and 1% level are indicated by (*), (**) and (***), respectively.

Low 2 3 4 High HML

Panel A: Duration
Realized -0.74** -0.37* -0.20 -0.21 -0.18 0.56*

(-2.32) (-1.89) (-1.42) (-1.21) (-0.86) (1.85)
No shock -0.37 -0.11 -0.02 -0.07 -0.01 0.36

(-1.04) (-0.45) (-0.11) (-0.35) (-0.02) (1.20)

Panel B: TCE
Realized -0.09 -0.20 -0.21 -0.51** -0.68*** -0.59**

(-0.37) (-1.14) (-1.17) (-2.55) (-2.63) (-2.05)
No shock 0.06 0.00 0.01 -0.24 -0.41 -0.47

(0.23) (0.00) (0.06) (-1.03) (-1.27) (-1.54)

Panel C: ICE
Realized -0.03 -0.12 -0.21* -0.31* -1.02** -0.99**

(-0.18) (-0.83) (-1.70) (-1.65) (-2.13) (-2.23)
No shock 0.14 0.02 -0.05 -0.09 -0.58 -0.73

(0.80) (0.09) (-0.33) (-0.40) (-1.09) (-1.55)

Panel D: FCE
Realized 0.02 -0.01 -0.24* -0.58** -0.88** -0.91**

(0.12) (-0.09) (-1.75) (-2.19) (-2.20) (-2.26)
No shock 0.14 0.13 -0.07 -0.31 -0.45 -0.59

(0.64) (0.75) (-0.39) (-1.18) (-0.99) (-1.41)
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Table 16: Monthly market and duration factor alphas of in quintiles sorted port-
folios in percent. OLS t-statistics are in parenthesis. At the end of June in each
calendar year t, I sort stocks into five quintile portfolios based on the realization
of the sorting variable of the fiscal year ending in t− 1. Portfolios are univariately
sorted either on Dur, TCE, ICE, or FCE. HML is the high-minus-low quintile
portfolio. Returns are equally weighted and include delisting returns. The duration
factor is the equally weighted HML duration portfolio. The market excess returns
are retrieved from Kenneth French´s website. Panel A includes the full sample (July
2003 - December 2020), Panel B includes the early sample (July 2003 - June 2008),
and Panel C includes the late sample (July 2008 - December 2020). Significance at
the 10%, 5% and 1% level are indicated by (*), (**) and (***), respectively.

Low 2 3 4 High HML

Panel A: Jul2003 - Dec2020
Dur 0.06 0.04 0.17* 0.07 0.06 0.00**

(0.47) (0.38) (1.83) (0.71) (0.47) (2.22)
TCE 0.17 0.17 0.00 0.03 0.04 -0.13

(1.04) (1.44) (0.04) (0.29) (0.24) (-0.74)
ICE 0.17 0.06 0.08 0.06 0.04 -0.14

(1.47) (0.49) (0.73) (0.50) (0.15) (-0.57)
FCE 0.09 0.14 0.09 -0.00 0.10 0.01

(0.72) (1.55) (0.92) (-0.01) (0.50) (0.04)

Panel B: Jul2003 - Jun2008
Dur 0.43*** 0.32* 0.41** 0.27* 0.43*** 0.00***

(2.85) (1.97) (2.51) (1.72) (2.85) (5.50)
TCE 0.14 0.20 0.11 0.48*** 0.92*** 0.78**

(0.59) (1.21) (0.63) (4.68) (3.04) (2.12)
ICE -0.00 -0.05 0.09 0.44*** 1.34*** 1.34***

(-0.00) (-0.22) (0.57) (3.49) (3.03) (2.82)
FCE 0.03 0.06 0.21 0.44** 1.12*** 1.09***

(0.13) (0.50) (1.29) (2.47) (3.11) (2.78)

Panel C: Jul2008 - Dec2020
Dur -0.02 -0.01 0.11 0.00 -0.02 0.00

(-0.10) (-0.06) (0.91) (0.04) (-0.10) (1.02)
TCE 0.21 0.20 0.03 -0.07 -0.30* -0.51***

(1.03) (1.23) (0.17) (-0.58) (-1.88) (-2.68)
ICE 0.24 0.12 0.13 0.00 -0.43 -0.67**

(1.63) (0.85) (0.95) (0.03) (-1.56) (-2.46)
FCE 0.13 0.21* 0.10 -0.11 -0.25 -0.38**

(0.84) (1.73) (0.76) (-0.66) (-1.11) (-2.10)
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Table 17: Monthly market and TCE factor alphas of in quintiles sorted portfolios
in percent. OLS t-statistics are in parenthesis. At the end of June in each calendar
year t, I sort stocks into five quintile portfolios based on the realization of the
sorting variable of the fiscal year ending in t− 1. Portfolios are univariately sorted
either on Dur, TCE, ICE, or FCE. HML is the high-minus-low quintile portfolio.
Returns are equally weighted and include delisting returns. The TCE-factor is the
equally weighted HML TCE portfolio. The market excess returns are retrieved
from Kenneth French´s website. Panel A includes the full sample (July 2003 -
December 2020), Panel B includes the early sample (July 2003 - June 2008), and
Panel C includes the late sample (July 2008 - December 2020). Significance at the
10%, 5% and 1% level are indicated by (*), (**) and (***), respectively.

Low 2 3 4 High HML

Panel A: Jul2003 - Dec2020
Dur -0.05 -0.02 0.15 0.04 0.06 0.11

(-0.27) (-0.12) (1.51) (0.48) (0.42) (0.67)
TCE 0.07 0.10 -0.05 -0.01 0.07 0.00***

(0.57) (0.83) (-0.37) (-0.12) (0.57) (11.98)
ICE 0.10 -0.02 0.02 0.02 0.06 -0.04

(0.97) (-0.18) (0.15) (0.15) (0.26) (-0.22)
FCE 0.04 0.10 0.03 -0.06 0.08 0.04

(0.36) (1.14) (0.33) (-0.37) (0.38) (0.27)

Panel B: Jul2003 - Jun2008
Dur 0.44** 0.32* 0.32* 0.37** 0.37* -0.07

(2.22) (1.86) (1.93) (2.34) (1.82) (-0.29)
TCE 0.41** 0.34** 0.20 0.44*** 0.41** 0.00

(2.05) (2.07) (1.12) (4.13) (2.05) (1.08)
ICE 0.22 0.20 0.22 0.45*** 0.69** 0.47

(1.20) (1.10) (1.48) (3.50) (2.04) (1.67)
FCE 0.26 0.15 0.38** 0.42** 0.60** 0.34**

(1.44) (1.36) (2.44) (2.24) (2.19) (2.00)

Panel C: Jul2008 - Dec2020
Dur -0.12 -0.09 0.06 -0.06 -0.20 -0.08

(-0.47) (-0.49) (0.44) (-0.55) (-1.17) (-0.38)
TCE -0.14 0.02 -0.05 -0.11 -0.14 -0.00***

(-0.86) (0.12) (-0.30) (-0.67) (-0.86) (-11.58)
ICE 0.03 -0.08 -0.03 -0.08 -0.27 -0.29

(0.19) (-0.58) (-0.20) (-0.44) (-0.89) (-1.17)
FCE -0.12 0.06 -0.01 -0.16 -0.18 -0.06

(-0.94) (0.56) (-0.09) (-0.82) (-0.65) (-0.28)
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Table 18: Monthly market and ICE factor alphas of in quintiles sorted portfolios
in percent. OLS t-statistics are in parenthesis. At the end of June in each calendar
year t, I sort stocks into five quintile portfolios based on the realization of the
sorting variable of the fiscal year ending in t− 1. Portfolios are univariately sorted
either on Dur, TCE, ICE, or FCE. HML is the high-minus-low quintile portfolio.
Returns are equally weighted and include delisting returns. The ICE-factor is the
equally weighted HML ICE portfolio. The market excess returns are retrieved from
Kenneth French´s website. Panel A includes the full sample (July 2003 - December
2020), Panel B includes the early sample (July 2003 - June 2008), and Panel C
includes the late sample (July 2008 - December 2020). Significance at the 10%, 5%
and 1% level are indicated by (*), (**) and (***), respectively.

Low 2 3 4 High HML

Panel A: Jul2003 - Dec2020
Dur -0.01 0.01 0.18* 0.09 0.17 0.18

(-0.05) (0.12) (1.92) (0.95) (1.13) (0.98)
TCE 0.22 0.14 -0.01 0.01 0.08 -0.14

(1.30) (1.15) (-0.05) (0.06) (0.89) (-0.88)
ICE 0.14 0.04 0.04 0.06 0.14 -0.00*

(1.28) (0.37) (0.41) (0.44) (1.28) (-1.89)
FCE 0.15 0.13 0.06 -0.03 0.13 -0.02

(1.07) (1.49) (0.57) (-0.19) (0.97) (-0.11)

Panel B: Jul2003 - Jun2008
Dur 0.36* 0.21 0.22 0.27 0.16 -0.20

(1.85) (1.27) (1.38) (1.55) (0.76) (-0.70)
TCE 0.18 0.36** 0.11 0.41*** 0.18 -0.00

(0.65) (2.12) (0.58) (3.82) (1.18) (-0.00)
ICE 0.21 0.09 0.22 0.47*** 0.21 -0.00

(1.10) (0.43) (1.43) (3.55) (1.10) (-1.31)
FCE 0.07 0.17 0.38** 0.34* 0.28 0.21

(0.30) (1.43) (2.34) (1.79) (1.39) (0.85)

Panel C: Jul2008 - Dec2020
Dur 0.11 0.04 0.17 0.07 0.15 0.04

(0.53) (0.26) (1.39) (0.59) (0.77) (0.17)
TCE 0.27 0.17 0.11 0.02 -0.03 -0.30

(1.25) (1.00) (0.66) (0.12) (-0.23) (-1.53)
ICE 0.15 0.08 0.07 0.08 0.15 -0.00**

(1.02) (0.60) (0.48) (0.51) (1.02) (-2.30)
FCE 0.18 0.19 0.08 -0.02 0.12 -0.06

(1.03) (1.54) (0.57) (-0.09) (0.66) (-0.33)

51



Table 19: Monthly market and FCE factor alphas of in quintiles sorted portfolios
in percent. OLS t-statistics are in parenthesis. At the end of June in each calendar
year t, I sort stocks into five quintile portfolios based on the realization of the
sorting variable of the fiscal year ending in t− 1. Portfolios are univariately sorted
either on Dur, TCE, ICE, or FCE. HML is the high-minus-low quintile portfolio.
Returns are equally weighted and include delisting returns. The FCE-factor is the
equally weighted HML FCE portfolio. The market excess returns are retrieved
from Kenneth French´s website. Panel A includes the full sample (July 2003 -
December 2020), Panel B includes the early sample (July 2003 - June 2008), and
Panel C includes the late sample (July 2008 - December 2020). Significance at the
10%, 5% and 1% level are indicated by (*), (**) and (***), respectively.

Low 2 3 4 High HML

Panel A: Jul2003 - Dec2020
Dur 0.00 0.03 0.18** 0.08 0.13 0.13

(0.02) (0.26) (2.01) (0.87) (0.91) (1.00)
TCE 0.19 0.16 0.00 0.01 0.06 -0.13

(1.18) (1.33) (0.01) (0.12) (0.61) (-1.08)
ICE 0.17 0.05 0.06 0.06 0.08 -0.09

(1.44) (0.42) (0.55) (0.53) (0.49) (-0.61)
FCE 0.11 0.14 0.08 -0.02 0.11 0.00

(0.91) (1.59) (0.77) (-0.12) (0.91) (0.29)

Panel B: Jul2003 - Jun2008
Dur 0.26 0.20 0.22 0.36** 0.30 0.04

(1.47) (1.22) (1.36) (2.15) (1.40) (0.16)
TCE 0.35 0.29 0.11 0.38*** 0.20 -0.15

(1.43) (1.64) (0.62) (3.68) (1.16) (-0.95)
ICE 0.15 0.16 0.23 0.46*** 0.32 0.17

(0.73) (0.76) (1.49) (3.44) (1.18) (0.68)
FCE 0.27 0.15 0.34** 0.32* 0.27 -0.00***

(1.32) (1.22) (2.04) (1.70) (1.32) (-3.00)

Panel C: Jul2008 - Dec2020
Dur 0.14 0.10 0.18 0.06 0.04 -0.10

(0.74) (0.71) (1.59) (0.48) (0.22) (-0.64)
TCE 0.20 0.23 0.14 0.03 -0.08 -0.28*

(0.93) (1.41) (0.91) (0.26) (-0.70) (-1.74)
ICE 0.22 0.11 0.12 0.11 -0.05 -0.27

(1.47) (0.81) (0.84) (0.71) (-0.25) (-1.44)
FCE 0.08 0.22* 0.13 0.02 0.08 -0.00*

(0.47) (1.77) (1.05) (0.15) (0.47) (-1.81)
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Table 20: Monthly CAPM and 2-factor alphas of common factor mimicking port-
folios. OLS t-statistics are in parenthesis. At the end of June in each calendar
year t, I sort stocks into five quintile portfolios based on the realization of the
sorting variable of the fiscal year ending in t − 1. Portfolios are sorted either on
Dur, TCE, ICE, or FCE. The respective second factor is the corresponding
high-minus-low (HML) quintile portfolio. Returns are equally weighted and in-
clude delisting returns. The market excess returns and size (SMB), value (SMB),
profitability (RMW), investments (CMA), and momentum (UMD) factors are re-
trieved from Kenneth French´s website. Panel A includes the full sample (July
2003 - December 2020), Panel B includes the early sample (July 2003 - June 2008),
and Panel C includes the late sample (July 2008 - December 2020). Significance at
the 10%, 5% and 1% level are indicated by (*), (**) and (***), respectively.

SMB HML RMW CMA UMD

Panel A: Jul2003 - Dec2020
CAPM -0.07 -0.35* 0.31*** -0.01 0.39

(-0.46) (-1.93) (2.81) (-0.13) (1.35)
Market+Dur -0.05 -0.17 0.35*** 0.06 0.22

(-0.31) (-1.15) (3.22) (0.65) (0.81)
Market+TCE -0.13 -0.24 0.38*** 0.01 0.32

(-0.84) (-1.41) (3.79) (0.13) (1.10)
Market+ICE -0.06 -0.30 0.34*** -0.00 0.34

(-0.40) (-1.65) (3.15) (-0.01) (1.17)
Market+FCE -0.05 -0.24 0.35*** 0.02 0.29

(-0.32) (-1.49) (3.31) (0.22) (1.03)

Panel B: Jul2003 - Jun2008
CAPM 0.05 0.22 0.52*** -0.08 0.76*

(0.21) (0.99) (2.80) (-0.47) (1.82)
Market+Dur 0.08 -0.00 0.44** -0.11 0.87**

(0.32) (-0.01) (2.37) (-0.65) (2.03)
Market+TCE 0.15 0.10 0.23 0.09 0.63

(0.55) (0.45) (1.41) (0.56) (1.40)
Market+ICE -0.02 0.18 0.27 0.13 0.17

(-0.07) (0.75) (1.44) (0.77) (0.42)
Market+FCE -0.01 0.01 0.19 0.11 0.44

(-0.04) (0.04) (1.12) (0.61) (0.99)

Panel C: Jul2008 - Dec2020
CAPM -0.13 -0.56** 0.24* 0.01 0.19

(-0.67) (-2.37) (1.85) (0.06) (0.53)
Market+Dur -0.08 -0.22 0.30** 0.16 -0.16

(-0.39) (-1.13) (2.29) (1.51) (-0.48)
Market+TCE -0.32 -0.25 0.39*** 0.17 -0.12

(-1.63) (-1.08) (3.01) (1.41) (-0.32)
Market+ICE -0.12 -0.39 0.29** 0.12 -0.17

(-0.58) (-1.62) (2.11) (0.91) (-0.46)
Market+FCE -0.06 -0.21 0.32** 0.19* -0.27

(-0.31) (-0.97) (2.38) (1.70) (-0.80)
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